Maytham N. Meqdad
Al-Mustaqbal University College

Published : 11 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Smart agriculture management system using internet of things Kaushik Sekaran; Maytham N. Meqdad; Pardeep Kumar; Soundar Rajan; Seifedine Kadry
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 3: June 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i3.14029

Abstract

In the world of digital era, an advance development with internet of things (IoT) were initiated, where devices communicate with each other and the process are automated and controlled with the help of internet. An IoT in an agriculture framework includes various benefits in managing and monitoring the crops. In this paper, an architectural framework is developed which integrates the internet of things (IoT) with the production of crops, different measures and methods are used to monitor crops using cloud computing. The approach provides real-time analysis of data collected from sensors placed in crops and produces result to farmer which is necessary for the monitoring the crop growth which reduces the time, energy of the farmer. The data collected from the fields are stored in the cloud and processed in order to facilitate automation by integrating IoT devices. The concept presented in the paper could increase the productivity of the crops by reducing wastage of resources utilized in the agriculture fields. The results of the experimentation carried out presents the details of temperature, soil moisture, humidity and water usage for the field and performs decision making analysis with the interaction of the farmer.
New prediction method for data spreading in social networks based on machine learning algorithm Maytham N. Meqdad; Rawya Al-Akam; Seifedine Kadry
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 6: December 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i6.16300

Abstract

Information diffusion prediction is the study of the path of dissemination of news, information, or topics in a structured data such as a graph. Research in this area is focused on two goals, tracing the information diffusion path and finding the members that determine future the next path. The major problem of traditional approaches in this area is the use of simple probabilistic methods rather than intelligent methods. Recent years have seen growing interest in the use of machine learning algorithms in this field. Recently, deep learning, which is a branch of machine learning, has been increasingly used in the field of information diffusion prediction. This paper presents a machine learning method based on the graph neural network algorithm, which involves the selection of inactive vertices for activation based on the neighboring vertices that are active in a given scientific topic. Basically, in this method, information diffusion paths are predicted through the activation of inactive vertices byactive vertices. The method is tested on three scientific bibliography datasets: The Digital Bibliography and Library Project (DBLP), Pubmed, and Cora. The method attempts to answer the question that who will be the publisher of thenext article in a specific field of science. The comparison of the proposed method with other methods shows 10% and 5% improved precision in DBL Pand Pubmed datasets, respectively.
Design of optimal search engine using text summarization through artificial intelligence techniques Kaushik Sekaran; P. Chandana; J. Rethna Virgil Jeny; Maytham N. Meqdad; Seifedine Kadry
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 3: June 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i3.14028

Abstract

Natural language processing is the trending topic in the latest research areas, which allows the developers to create the human-computer interactions to come into existence. The natural language processing is an integration of artificial intelligence, computer science and computer linguistics. The research towards natural Language Processing is focused on creating innovations towards creating the devices or machines which operates basing on the single command of a human. It allows various Bot creations to innovate the instructions from the mobile devices to control the physical devices by allowing the speech-tagging. In our paper, we design a search engine which not only displays the data according to user query but also performs the detailed display of the content or topic user is interested for using the summarization concept. We find the designed search engine is having optimal response time for the user queries by analyzing with number of transactions as inputs. Also, the result findings in the performance analysis show that the text summarization method has been an efficient way for improving the response time in the search engine optimizations.