Nusrat Jahan
Daffodil International University

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Depression prognosis using natural language processing and machine learning from social media status Md. Tazmim Hossain; Md. Arafat Rahman Talukder; Nusrat Jahan
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i3.pp2847-2855

Abstract

Depression is an acute problem throughout the world. Due to worst and prolong depression many people dies in every year. The problem is that most of the people are not concern of the fact that they are suffering from depression. In this research, our aim was to find out whether an individual is depressed or not by analyzing social media status. Therefore, we focused on real data. Our dataset consists of 2000 sentences, which was collected from different social media platforms Facebook, Twitter, and Instagram. Then, we have performed five data pre-processing approaches for natural language processing (NLP) such as tokenization, removal of stop words, removing empty string, removing punctuations, stemming and lemmatization. For our selected model, we considered that processed data as an input. Finally, we applied six machine learning (ML) classifiers multinomial Naive Bayes (NB), logistic regression, liner support vector classifier, random forest, K-nearest neighbour, and decision tree to achieve better accuracy over our dataset. Among six algorithms, multinomial NB and logistic regression performed well on our dataset and obtained 98% accuracy.
An effective deep learning network for detecting and classifying glaucomatous eye Md. Tanvir Ahmed; Imran Ahmed; Rubayed Ahmmad Rakin; Mst. Tuhin Akter; Nusrat Jahan
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i5.pp5305-5313

Abstract

Glaucoma is a well-known complex disease of the optic nerve that gradually damages eyesight due to the increase of intraocular pressure inside the eyes. Among two types of glaucoma, open-angle glaucoma is mostly happened by high intraocular pressure and can damage the eyes temporarily or sometimes permanently, another one is angle-closure glaucoma. Therefore, being diagnosed in the early stage is necessary to safe our vision. There are several ways to detect glaucomatous eyes like tonometry, perimetry, and gonioscopy but require time and expertise. Using deep learning approaches could be a better solution. This study focused on the recognition of open-angle affected eyes from the fundus images using deep learning techniques. The study evolved by applying VGG16, VGG19, and ResNet50 deep neural network architectures for classifying glaucoma positive and negative eyes. The experiment was executed on a public dataset collected from Kaggle; however, every model performed better after augmenting the dataset, and the accuracy was between 93% and 97.56%. Among the three models, VGG19 achieved the highest accuracy at 97.56%.