Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

A progressive domain expansion method for solving optimal control problem Olalekan Ogunbiyi; Oludare Y. Ogundepo; Madugu I. Sani; Cornelius Thomas; Benjamin J. Olufeagba
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 4: August 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i4.15047

Abstract

Electricity generation at the hydropower stations in Nigeria has been below the expected value. While the hydro stations have a capacity to generate up to 2,380 MW, the daily average energy generated in 2017 was estimated at around 846 MW. A factor responsible for this is the lack of a proper control system to manage the transfer of resources between the cascaded Kainji-Jebba Hydropower stations operating in tandem. This paper addressed the optimal regulation of the operating head of the Jebba hydropower reservoir in the presence of system constraints, flow requirement and environmental factors that are weather-related. The resulting two-point boundary value problem was solved using the progressive expansion of domain technique as against the shooting or multiple shooting techniques. The results provide the optimal inflow required to keep the operating head of the Jebba reservoir at a nominal level, hence ensuring that the maximum number of turbo-alternator units are operated.
Web-based software application design for solar PV system sizing Lambe Mutalub Adesina; Olalekan Ogunbiyi; Mustapha Mubarak
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 6: December 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i6.21666

Abstract

The solar photovoltaic (PV) energy source systems generally rely on the availability of sunlight, its duration, and the capacity of storage devices if it is not a grid-tie system. The components of the PV sources come in different sizes and capacities, depending on the various applications and available products in the market. Therefore, sizing of PV components becomes important to the functionality and reliability of solar PV sources. This work is aimed at the development of a web-based software application designed for sizing the capacity of solar PV source components that meet required energy demand. A description of photovoltaic system components, available types, and sizing techniques are discussed. Parameter evaluation algorithms with flowcharts were developed for PV components. Consequently, web-based software was developed and simulated for a different case study. The results described the estimated load, average daily load, ratings of PV system components such as inverter, battery, solar panel, and charge controller. The cost estimates of each component, the total estimated cost of the project, and the specification of components’ purchasing store are similarly presented. Thus, the developed application can be applied to size different ranges of microgrid systems meant for several applications.