Mohammed Guerbaoui
Moulay Ismail University

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

An enhanced multi-objective artificial bee colony algorithm with non-dominated sorting strategy Hamid Bouali; Bachir Benhala; Mohammed Guerbaoui
Indonesian Journal of Electrical Engineering and Computer Science Vol 33, No 3: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v33.i3.pp1736-1747

Abstract

This paper presents an improved metaheuristic technique inspired by the foundational concepts of the artificial bee colony (ABC) algorithm adapted to deal with multi-objective optimization challenges. Our approach combines the main ideas of ABC with a non-dominated sorting strategy including aspects of Pareto dominance, crowding distance, and greedy selection method. Furthermore, the chosen non-dominated solutions are archived in a repository with a static size. The presented approach, multi-objective artificial bee colony (MOABC), is compared to other state-of-the-art algorithms including the non-dominated sorting genetic algorithm II (NSGA II) and the multi-objective particle swarm optimization (MOPSO). MOABC and selected algorithms from the literature are applied to five zitzler-deb-thiele (ZDT) Multi-objective benchmark functions. Then three key metrics are employed for performance evaluations: generational distance (GD), spread (SP), and hypervolume (HV). The simulation results suggest that the proposed method is competitive and presents an effective choice for tackling multi-objective optimization problems.