Otman Abdoun
Abdelmalek Essaadi University

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Parallel genetic approach for routing optimization in large ad hoc networks Hala Khankhour; Otman Abdoun; Jâafar Abouchabaka
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp748-755

Abstract

This article presents a new approach of integrating parallelism into the genetic algorithm (GA), to solve the problem of routing in a large ad hoc network, the goal is to find the shortest path routing. Firstly, we fix the source and destination, and we use the variable-length chromosomes (routes) and their genes (nodes), in our work we have answered the following question: what is the better solution to find the shortest path: the sequential or parallel method?. All modern systems support simultaneous processes and threads, processes are instances of programs that generally run independently, for example, if you start a program, the operating system spawns a new process that runs parallel elements to other programs, within these processes, we can use threads to execute code simultaneously. Therefore, we can make the most of the available central processing unit (CPU) cores. Furthermore, the obtained results showed that our algorithm gives a much better quality of solutions. Thereafter, we propose an example of a network with 40 nodes, to study the difference between the sequential and parallel methods, then we increased the number of sensors to 100 nodes, to solve the problem of the shortest path in a large ad hoc network.
Comparing machine learning and deep learning classifiers for enhancing agricultural productivity: case study in Larache Province, Northern Morocco Sara Belattar; Otman Abdoun; Haimoudi El Khatir
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i2.pp1689-1697

Abstract

The agriculture sector in the Tangier-Tetouan-Al-Hoceima-Region (Northern Morocco) contributes a significant percentage to the national revenue. The Larache Province is at the regional forefront in agriculture terms due to its large irrigated areas. Golden-Gogi is a biological farm located in the Larache Province, and its objective is to produce organic crops. Besides climate change, this farm suffers from biotic factors such as snails and insects. These problems cause diseases in plants, resulting in massive crop production losses. Early detection of disease and biotic factors in plants is a difficult task for farmers, but it is now possible thanks to artificial intelligence. For that reason, we aim to contribute to this Province by comparing the well-known models in machine learning (ML) and deep learning (DL) used in early plant disease detection to specify the best-classifier in terms of detecting mint plant diseases. Mint plant is a major crop on the Golden-Gogi farm, and its dataset was collected from there. As per findings, DL classifiers outperform ML classifiers in disease detection. The best-classifier is DenseNet201, with high accuracy of 94.12%. Hence, the system using DenseNet201 offers a solution for farmers of this Province in making urgent decisions to avoid mint yield losses.
Integration of evolutionary algorithm in an agent-oriented approach for an adaptive e-learning Fatima Zohra Lhafra; Otman Abdoun
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i2.pp1964-1978

Abstract

This paper describes an agent-oriented approach that aims to create learning situations by solving problems. The proposed system is designed as a multi-agent that organizes interfaces, coordinators, sources of information, and mobiles. The objective of this approach is to get learners to solve a problem that leads them to get engaged in several learning activities, chosen according to their level of knowledge and preferences in order to ensure adaptive learning and reduce the rate of learner abundance in an e-learning system. The search for learning activities procedure is based on evolutionary algorithms typically a genetic algorithm, to offer learners the optimal solution adapted to their profiles and ensure a resolution of the proposed learning problem. In terms of results, we have adopted “immigration strategies” to improve the performance of the genetic algorithm. To show the effectiveness of the proposed approach we have made a comparative study with other artificial intelligence optimization methods. We conducted a real experiment with primary school learners in order to test the effectiveness of the proposed approach and to set up its functioning. The experiment results showed a high rate of success and engagement among the learners who followed the proposed adaptive learning scenario.