Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

The design of an efficient class E-LCCL capacitive power transfer system through frequency tuning method Khairul Kamarudin Hasan; Shakir Saat; Yusmarnita Yusop; Huzaimah Husin; Nor Diyana Md Sin
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i2.pp1095-1104

Abstract

In this work, the optimum zero voltage switching (ZVS) of Class E-LCCL capacitive power transfer (CPT) was determined via frequency tuning method. Through this an efficient system can be guanranteed although there is a change in the capacitive plates distance. This study used a Class-E LCCL inverter, as it can operate at a high alternate current frequency, besides producing low switching losses and minimal power losses. Specifically, this study conducted simulations and experiments to analyse the performance of an LCCL CPT System at 1 MHz operating frequency and 24 V DC supply voltage. Using an air gap distance of 0.1 cm, the designed CPT system prototype successfully achieved an output power of 10W and an efficiency of 95.45%. This study also found that by tuning the resonant frequency of the Class E-LCCL system, the optimum ZVS can be obtained although capacitive plate distance was varied from 1-3 cm via experimental. The results of this study could benefit medical implant and portable device development, consumer electronics, and environments that involve electrical hazards.
A New Design of Capacitive Power Transfer Based on Hybrid Approach for Biomedical Implantable Device Zaki Mustapa; Shakir Saat; Yusmarnita Yusof
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 4: August 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1015.852 KB) | DOI: 10.11591/ijece.v9i4.pp2365-2376

Abstract

This paper presents the development of a new design method of capacitive power transfer (CPT) which is based on hybrid concept for Biomedical Implants. This method is able to improve various issues found in the widely used CPT system that is bipolar CPT method. Based on the ability of this purposed, the simulation of the CPT system has been designed to prove an amount of power transferred through a layer of tissue. The design used to validate the suggested model which to powering implanted device, and it was performed with 3cm square plates, which have a layer of beef with the 5mm thickness in between 2 coupling plate. Power signal was generated by Class E zero voltage switching. The Class E zero voltage switching has been designed to generating alternate current with the 1MHz frequency appropriate to the hybrid CPT system specification.