Ily Amalina Ahmad Sabri
Universiti Malaysia Terengganu

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

A deep web data extraction model for web mining: a review Ily Amalina Ahmad Sabri; Mustafa Man
Indonesian Journal of Electrical Engineering and Computer Science Vol 23, No 1: July 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v23.i1.pp519-528

Abstract

The World Wide Web has become a large pool of information. Extracting structured data from a published web pages has drawn attention in the last decade. The process of web data extraction (WDE) has many challenges, dueto variety of web data and the unstructured data from hypertext mark up language (HTML) files. The aim of this paper is to provide a comprehensive overview of current web data extraction techniques, in termsof extracted quality data. This paper focuses on study for data extraction using wrapper approaches and compares each other to identify the best approach to extract data from online sites. To observe the efficiency of the proposed model, we compare the performance of data extraction by single web page extraction with different models such as document object model (DOM), wrapper using hybrid dom and json (WHDJ), wrapper extraction of image using DOM and JSON (WEIDJ) and WEIDJ (no-rules). Finally, the experimentations proved that WEIDJ can extract data fastest and low time consuming compared to other proposed method. 
Improving Performance of DOM in Semi-structured Data Extraction using WEIDJ Model Ily Amalina Ahmad Sabri; Mustafa Man
Indonesian Journal of Electrical Engineering and Computer Science Vol 9, No 3: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v9.i3.pp752-763

Abstract

Web data extraction is the process of extracting user required information from web page. The information consists of semi-structured data not in structured format. The extraction data involves the web documents in html format. Nowadays, most people uses web data extractors because the extraction involve large information which makes the process of manual information extraction takes time and complicated. We present in this paper WEIDJ approach to extract images from the web, whose goal is to harvest images as object from template-based html pages. The WEIDJ (Web Extraction Image using DOM (Document Object Model) and JSON (JavaScript Object Notation)) applies DOM theory in order to build the structure and JSON as environment of programming. The extraction process leverages both the input of web address and the structure of extraction. Then, WEIDJ splits DOM tree into small subtrees and applies searching algorithm by visual blocks for each web page to find images. Our approach focus on three level of extraction; single web page, multiple web page and the whole web page. Extensive experiments on several biodiversity web pages has been done to show the comparison time performance between image extraction using DOM, JSON and WEIDJ for single web page. The experimental results advocate via our model, WEIDJ image extraction can be done fast and effectively.