Selami Bagriyanik
Bahcesehir University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Using Data Mining to Identify COSMIC Function Point Measurement Competence Selami Bagriyanik; Adem Karahoca
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 6: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (342.721 KB) | DOI: 10.11591/ijece.v8i6.pp5253-5259

Abstract

Cosmic Function Point (CFP) measurement errors leads budget, schedule and quality problems in software projects. Therefore, it’s important to identify and plan requirements engineers’ CFP training need quickly and correctly. The purpose of this paper is to identify software requirements engineers’ COSMIC Function Point measurement competence development need by using machine learning algorithms and requirements artifacts created by engineers. Used artifacts have been provided by a large service and technology company ecosystem in Telco. First, feature set has been extracted from the requirements model at hand. To do the data preparation for educational data mining, requirements and COSMIC Function Point (CFP) audit documents have been converted into CFP data set based on the designed feature set. This data set has been used to train and test the machine learning models by designing two different experiment settings to reach statistically significant results. Ten different machine learning algorithms have been used. Finally, algorithm performances have been compared with a baseline and each other to find the best performing models on this data set. In conclusion, REPTree, OneR, and Support Vector Machines (SVM) with Sequential Minimal Optimization (SMO) algorithms achieved top performance in forecasting requirements engineers’ CFP training need.