Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Recent advances in phase-locked loop based synchronization methods for inverter-based renewable energy sources Haval Sardar Kamil; Dalila Mat Said; Mohd Wazir Mustafa; Mohammad Reza Miveh; Nasarudin Ahmad
Indonesian Journal of Electrical Engineering and Computer Science Vol 18, No 1: April 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v18.i1.pp1-8

Abstract

Recently, researchers have shown an increased interest in renewable energy sources (RESs) to improve power quality, reliability and stability of the power system. However, RESs require proper control strategies to ride through grid disturbances and stay connected to the main grid for the stability contribution. Moreover, the control of them relies mainly on the synchronization algorithms to precisely detect the voltage phase angle, magnitude and frequency. Throughout the years, various synchronization schemes have been introduced and developed. In the renewable-based generation sources, the phase-locked loop (PLL) is a well-known technique for operating grid-tied power converters for the estimation of the synchronization information and grid voltage monitoring. This paper aims to provide a comprehensive review of the recently developed PLL algorithms for grid synchronization applications. At first, various estimation techniques are discussed. Then, a comparison between various PLLs and possible future works are recommended.
Photovoltaic system DC series arc fault: a case study Alaa Hamza Omran; Dalila Mat Said; Siti Maherah Hussin; Sadiq H. Abdulhussain
Indonesian Journal of Electrical Engineering and Computer Science Vol 28, No 2: November 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v28.i2.pp625-635

Abstract

Photovoltaic (PV) systems are becoming increasingly popular; however, arc faults on the direct current (DC) side are becoming more widespread as a result of the effects of aging as well as the trend toward higher DC voltage levels, posing severe risk to human safety and system stability. The parallel arc faults present higher level of current as compared with the series arc faults, making it more difficult to spot the series arc. In this paper and for the aim of condition monitoring, the features of a DC series arc fault are analyzed by analysing the arc features, performing model’s simulation in PSCAD, and carrying out experimental studies. Various arc models are simulated and investigated; for low current arcs, the heuristic model is used where a set of parameters established. Moreover, the heuristic model’s simulated arc has been shown to be compatible with the experimental data. The features of arc noise in the electrode separation region and steady-arcing states with varied gap widths are investigated. It has been discovered that after an arc fault occurs, arc noise increases, notably in the frequency range below 50 kHz; where this property is useful for detecting DC series arc faults. Besides that, variations in air gap width are more sensitive to frequencies under 5 kHz.