Huda Kadhim Tayyeh
University of Information Technology and Communications

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Classifying confidential data using SVM for efficient cloud query processing Huda Kadhim Tayyeh; Ahmed Sabah Ahmed Al-Jumaili
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 6: December 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i6.13059

Abstract

Nowadays, organizations are widely using a cloud database engine from the cloud service providers. Privacy still is the main concern for these organizations where every organization is strictly looking forward more secure environment for their own data. Several studies have proposed different types of encryption methods to protect the data over the cloud. However, the daily transactions represented by queries for such databases makes encryption is inefficient solution. Therefore, recent studies presented a mechanism for classifying the data prior to migrate into the cloud. This would reduce the need of encryption which enhances the efficiency. Yet, most of the classification methods used in the literature were based on string-based matching approach. Such approach suffers of the exact match of terms where the partial matching would not be considered. This paper aims to take the advantage of N-gram representation along with Support Vector Machine classification. A real-time data will used in the experiment. After conducting the classification, the Advanced Encryption Standard algorithm will be used to encrypt the confidential data. Results showed that the proposed method outperformed the baseline encryption method. This emphasizes the usefulness of using the machine learning techniques for the process of classifying the data based on confidentiality.