Julia Tholath Jose
BITS Pilani Dubai Campus

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Modeling of the magnetizing phenomena of doubly fed induction generator using neuro-fuzzy algorithm considering non-linearity Julia Tholath Jose; Adhir Baran Chattopadhyay
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 1: February 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (926.634 KB) | DOI: 10.11591/ijece.v9i1.pp23-33

Abstract

Doubly fed Induction Generators (DFIGs) are quite common in wind energy conversion systems because of their variable speed nature and the lower rating of converters. Magnetic flux saturation in the DFIG significantly affect its behavior during transient conditions such as voltage sag, sudden change in input power and short circuit. The effect of including saturation in the DFIG modeling is significant in determining the transient performance of the generator after a disturbance. To include magnetic saturation in DFIG model, an accurate representation of the magnetization characteristics is inevitable. This paper presents a qualitative modeling for magnetization characteristics of doubly fed induction generator using neuro-fuzzy systems. Neuro-fuzzy systems with one hidden layer of Gaussian nodes are capable of approximating continuous functions with arbitrary precision. The results obtained are compared with magnetization characteristics obtained using discrete fourier transform, polynomial and exponential curve fitting. The error analysis is also done to show the effectiveness of the neuro fuzzy modeling of magnetizing characteristics. By neuro-fuzzy algorithm, fast learning convergence is observed and great performance in accuracy is achieved.