Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

H-Bridge based Five-Level Current-Source Inverter for Grid Connected Photovoltaic Power Conditioner Suroso Suroso; Daru Tri Nugroho; Toshihiko Noguchi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 11, No 3: September 2013
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v11i3.979

Abstract

         This paper presents an application of a new circuit configuration of H-bridge based five-level current-source inverter (CSI) used for grid connected photovoltaics system. In this topology, the intermediate level currents of the five-level current waveform are generated by connecting DC current module to the H-bridge CSI. Some new features can be derived using this new topology such as reducing the switching power device count, and reducing the inductor conduction losses of the inverter. The proposed five-level CSI is tested for grid connected photovoltaic system through computer simulation using PSIM software. Furthermore, the experimental test results of the proposed five-level CSI are presented. The results show that the inverter works properly generating a five-level current waveform and injecting a sinusoidal current into power grid with less harmonics distortion and with unity power factor operation.
Three-level modified sine wave inverter equipped with online temperature monitoring system Suroso Suroso; Ahmad Khafidz; Winasis Winasis; Hari Siswantoro
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 2: April 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i2.14848

Abstract

Research and development on power converters are getting more interesting in recent years. It is also buttressed by rapid development in related fields, such as power semiconductor, digital advanced control, magnetic material and use of power converters in many sectors.  In addition to the power quality matter, simplicity of inverter circuits is another notable aspect that should be considered toward economical feature. Adding the quantity of power switches will increase complexity of overall inverter circuits. This paper discusses a circuit configuration of three-level modified sine wave neutral point shorted power inverter which work converting dc power into ac power with less number of power switches. To improve the performance and feature of inverter circuits, the inverter was equipped with online temperature monitoring, and overheat protection based on internet of things. Adding online temperature monitoring system makes easier in monitoring of circuits to prevent the excessive faults of inverter. Some computer based test data are shown and discussed. Furthermore, experiment results of the inverter prototype, and its online monitoring system are presented. Test outputs demonstrated that the proposed system worked properly generating a three-level modified sine wave voltage, with online temperature monitoring system.
Five-Level Common-Emitter Inverter Using Reverse-Blocking IGBTs Suroso Suroso; Toshihiko Noguchi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 10, No 1: March 2012
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v10i1.757

Abstract

In a high switching frequency operation of current-source inverter (CSI), a conventional way to obtain unidirectional power switches is by connecting discrete diodes in series with the high speed power switches, i.e. power MOSFETs or IGBTs. However, these discrete diodes will cause extra losses to the power converter. This paper presents experimental test results of high switching frequency five-level common-emitter CSI using the emerging unidirectional power switches, i.e. reverse blocking (RB)-IGBTs. Experimental tests were also conducted to compare the performance between power MOSFETs in series with the discrete diodes, and the RB-IGBTs having inherent reverse blocking capability. The results show that using RB-IGBTs, the efficiency of the power converter increase. However, it is also confirmed that the recently available RB-IGBTs have slow reverse recovery current than the discrete fast-recovery diodes connected in series with power MOSFETs.
Power loss analysis of current-modules based multilevel current-source power inverters Suroso Suroso; Winasis Winasis; Daru Tri Nugroho; Wahyu Tri Cahyanto
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 1: February 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i1.11601

Abstract

A power loss analysis of multilevel current-source inverter (MCSI) circuits developed from two basic configurations of three-level current-source inverters, i.e. H-bridge and common-emitter inverter configurations is presented and discussed. The first circuit topology of the MCSI is developed by using DC current modules connected to the primary three-level H-bridge inverter. The second MCSI circuit is created by connecting the current-modules to a three-level common-emitter inverter. The DC current modules work generating the intermediate level waveform of the inverter circuits. Power loss analysis of the both topologies was carried out to explore the efficiency performance of the inverter circuits. The results showed that for the H-bridge and common-emitter MCSI using DC current modules, the amount of conduction losses in the inverter circuits could be diminished when the level number of AC output current increase. The measurement test results have also proved that using these MCSI topologies, the power conversion efficiency will also increase.