Agileswari K. Ramasamy
Universiti Tenaga Nasional

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Grid reactive voltage regulation and cost optimization for electric vehicle penetration in power network Farrukh Nagi; Aidil Azwin; Navaamsini Boopalan; Agileswari K. Ramasamy; Marayati Marsadek; Syed Khaleel Ahmed
Indonesian Journal of Electrical Engineering and Computer Science Vol 25, No 2: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v25.i2.pp741-754

Abstract

Expecting large electric vehicle (EV) usage in the future due to environmental issues, state subsidies, and incentives, the impact of EV charging on the power grid is required to be closely analyzed and studied for power quality, stability, and planning of infrastructure. When a large number of energy storage batteries are connected to the grid as a capacitive load the power factor of the power grid is inevitably reduced, causing power losses and voltage instability. In this work large-scale 18K EV charging model is implemented on IEEE 33 network. Optimization methods are described to search for the location of nodes that are affected most due to EV charging in terms of power losses and voltage instability of the network. Followed by optimized reactive power injection magnitude and time duration of reactive power at the identified nodes. It is shown that power losses are reduced and voltage stability is improved in the grid, which also complements the reduction in EV charging cost. The result will be useful for EV charging stations infrastructure planning, grid stabilization, and reducing EV charging costs.
Small Signal Stability Analysis of Grid Connected Photovoltaic Shalom Lim Zhu Aun; Marayati Bte Marsadek; Agileswari K. Ramasamy
Indonesian Journal of Electrical Engineering and Computer Science Vol 6, No 3: June 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v6.i3.pp553-562

Abstract

This paper primarily focuses on the small signal stability analysis of a power system integrated with solar photovoltaics (PV). The test system used in this study is the IEEE 39-bus. The small signal stability of the test system are investigated in terms of eigenvalue analysis, damped frequency, damping ratio and participation factor. In this study, various conditions are analyzed which include the increase in solar PV penetration into the system and load variation. The results obtained indicate that there is no significant impact of solar PV penetration on the small signal stability of large scaled power system.