Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Improve Interval Optimization of FLR using Auto-speed Acceleration Algorithm Yusuf Priyo Anggodo; Imam Cholissodin
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 4: August 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i4.6668

Abstract

Inflation is a benchmark of a country's economic development. Inflation is very influential on various things, so forecasting inflation to know on upcoming inflation will impact positively. There are various methods used to perform forecasting, one of which is the fuzzy time series forecasting with maximum results. Fuzzy logical relationships (FLR) model is a very good in doing forecasting. However, there are some parameters that the value needs to be optimised. Interval is a parameter which is highly influence toward forecasting result. The utilizing optimization with hybrid automatic clustering and particle swarm optimization (ACPSO). Automatic clustering can do interval formation with just the right amount. While the PSO can optimise the value of each interval and it is providing maximum results. This study proposes the improvement in find the solution using auto-speed acceleration algorithm. Auto-speed acceleration algorithm can find a global solution which is hard to reach by the PSO and time of computation is faster. The results of the acquired solutions can provide the right interval so that the value of the FLR can perform forecasting with maximum results.
Hybridizing PSO With SA for Optimizing SVR Applied to Software Effort Estimation Dinda Novitasari; Imam Cholissodin; Wayan Firdaus Mahmudy
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 14, No 1: March 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v14i1.2812

Abstract

This study investigates Particle Swarm Optimization (PSO) hybridization with Simulated Annealing (SA) to optimize Support Vector Machine (SVR). The optimized SVR is used for software effort estimation. The optimization of SVR consists of two sub-problems that must be solved simultaneously; the first is input feature selection that influences method accuracy and computing time. The next sub-problem is finding optimal SVR parameter that each parameter gives significant impact to method performance. To deal with a huge number of candidate solutions of the problems, a powerful approach is required. The proposed approach takes advantages of good solution quality from PSO and SA. We introduce SA based acceptance rule to accept new position in PSO. The SA parameter selection is introduced to improve the quality as stochastic algorithm is sensitive to its parameter. The comparative works have been between PSO in quality of solution and computing time. According to the results, the proposed model outperforms PSO SVR in quality of solution