Tien Han Chua
Universiti Teknologi Malaysia

Published : 10 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

Non-radiative wireless energy transfer with single layer dual-band printed spiral resonator Lai Ly Pon; Sharul Kamal Abdul Rahim; Chee Yen Leow; Tien Han Chua
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (795.613 KB) | DOI: 10.11591/eei.v8i3.1593

Abstract

Accomplishing equilibrium in terms of transfer efficiency for dual-band wireless energy transfer (WET) system remains as one of key concerns particularly in the implementation of a single transmitter device which supports simultaneous energy and data transfer functionality. Three stages of design method are discussed in addressing the aforementioned concern. A single layer dual-band printed spiral resonator for non-radiative wireless energy transfer operating at 6.78 MHz and 13.56 MHz is presented. By employing multi-coil approach, measured power transfer efficiency for a symmetrical link separated at axial distance of 30 mm are 72.34% and 74.02% at the respective frequency bands. When operating distance is varied between 30 mm to 38 mm, consistency of simulated peak transfer efficiency above 50% is achievable.
26 GHz phase shifters for multi-beam nolen matrix towards fifth generation (5G) technology Norhudah Seman; Nazleen Syahira Mohd Suhaimi; Tien Han Chua
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (763.579 KB) | DOI: 10.11591/eei.v8i3.1577

Abstract

This paper presents the designs of phase shifters for multi-beam Nolen matrix towards the fifth generation (5G) technology at 26 GHz. The low-cost, lightweight and compact size 0° and 45° loaded stubs and chamfered 90°, 135° and 180° Schiffman phase shifters are proposed at 26 GHz. An edge at a corner of the 50 Ω microstrip line Schiffman phase shifter is chamfered to reduce the excess capacitance and unwanted reflection. However, the Schiffman phase shifter topology is not relevant to be applied for the phase shifter less than 45° as it needs very small arc bending at 26 GHz. The stubs are loaded to the phase shifter in order to obtain electrical lengths, which are less than 45°. The proposed phase shifters provide return loss better than 10 dB, insertion loss of -0.97 dB and phase difference imbalance of ± 4.04° between 25.75GHz and 26.25 GHz. The Rogers RT/duroid 5880 substrate with dielectric constant of 2.2 and substrate thickness of 0.254 mm is implemented in the designs.