Mohammed A. Tawfeeq
Mustansiriyah University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Deep learning model for thorax diseases detection Ghada A. Shadeed; Mohammed A. Tawfeeq; Sawsan M. Mahmoud
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 1: February 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i1.12997

Abstract

Despite the availability of radiology devices in some health care centers, thorax diseases are considered as one of the most common health problems, especially in rural areas. By exploiting the power of the Internet of things and specific platforms to analyze a large volume of medical data, the health of a patient could be improved earlier. In this paper, the proposed model  is based on pre-trained ResNet-50  for diagnosing thorax diseases. Chest x-ray images are cropped to extract the rib cage part from the chest radiographs. ResNet-50 was re-train on Chest x-ray14 dataset where a chest radiograph images are inserted into the model to determine if the person is healthy or not. In the case of an unhealthy patient, the model can classify the disease into one of the fourteen chest diseases. The results show the ability of ResNet-50 in achieving impressive performance in classifying thorax diseases.
Overlapped hierarchical clusters routing protocol for improving quality of service Hayder Fakher Jassim; Mohammed A. Tawfeeq; Sawsan M. Mahmoud
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 3: June 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i3.18354

Abstract

The rapid development in communications and sensors technologies make wireless sensor networks (WSNs) as essential key in several advanced applications such as internet of things (IoT). The increasing demands on using WSNs required high quality of services (QoS) because most WSNs applications have critical requirements. This work aims to offer a routing protocol to improve the QoS in WSNs, taking in consideration its ability to prolong the lifetime of the network, optimize the utilization of the limited bandwidth available, and decrease the latency that accompanies the packets transmitted to the gateway. The proposed protocol is called overlapped hierarchical cluster routing protocol (OHCRP). OHCRP is compared with the traditional routing protocols such as SPEED, and THVR. The results show that OHCRP reduces latency effectively and achieve high energy conservation, which lead to increase the network lifetime and insure network availability.