Regresi linier merupakan metode statistik untuk memeriksa hubungan antara variabel respons dan satu atau lebih variabel prediktor. Dalam sebuah penelitian, satu unit observasi harus diteliti selama beberapa periode waktu, karena mempelajari satu unit dalam satu periode waktu tidaklah cukup. Oleh karena itu, sebuah pendekatan statistik yang disebut analisis regresi panel diciptakan untuk mengintegrasikan data cross-section dan data time series. Namun pada kenyataannya, perbedaan kondisi antar lokasi dipengaruhi oleh efek spasial yang menyebabkan terjadinya heterogenitas spasial. Dikembangkanlah metode Geographically Weighted Regression (GWR) untuk mengatasi masalah heterogenitas spasial. Berdasarkan kelebihan kedua metode tersebut maka berkembanglah suatu metode yang menggabungkan antara regresi data panel dan GWR yaitu Geographically Weighted Panel Regression (GWPR). Tujuan dari penelitian ini adalah untuk mengetahui faktor-faktor yang mempengaruhi indeks pembangunan manusia (IPM) di Indonesia tahun 2017-2022 dan menentukan model terbaik dengan membandingkan model regresi global dan GWPR. Model GWPR dengan pembobot adaptive bisquare merupakan model terbaik dengan nilai AIC terkecil dan R^2 terbesar. Secara keseluruhan semua variabel prediktor yang digunakan dalam penelitian berpengaruh signifikan terhadap IPM pada taraf signifikansi α=0,05. Persamaan model dan variabel yang berpengaruh signifikan yang dihasilkan dalam pemodelan GWPR berbeda untuk setiap provinsi. Berdasarkan kesamaan variabel yang mempengaruhi IPM di provinsi yang letaknya berdekatan membentuk 8 kelompok.