Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Robotics and Control (JRC)

Backstepping Control for a Tandem Rotor UAV Robot with Two 2-DOF Tiltable Coaxial Rotors Xiongshi Xu; Keigo Watanabe; Isaku Nagai
Journal of Robotics and Control (JRC) Vol 2, No 5 (2021): September
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.25116

Abstract

The study of a fully actuated multi-rotor UAV robot is very important in the field of infrastructure inspection because it needs a dexterous motion, such as hovering in a special fixed attitude, etc. This paper presents a backstepping control method for a simplified fully actuated model of a tandem-rotor UAV robot with two 2-DOF tiltable coaxial rotors. A MIMO vectorial backstepping approach is adopted here because the input distribution matrix is a square and nonsingular matrix. The two-stage control method based on the Lyapunov second method is presented to stabilize the position and attitude of the whole system. The static control allocation problem is also solved by using a Moore-Penrose pseudo-inverse. Finally, two simulations are demonstrated to verify the performance of the proposed control method, where one is a stabilizing problem in which all the desired position and attitude are to be constant, whereas the other is a trajectory tracking problem in which the desired positions are time-varying while the desired attitudes are to be constant.
Backstepping-based Super-Twisting Sliding Mode Control for a Quadrotor Manipulator with Tiltable Rotors Shilin Yi; Keigo Watanabe; Isaku Nagai
Journal of Robotics and Control (JRC) Vol 3, No 2 (2022): March
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i2.13368

Abstract

Designing a robust controller is very important in the control of outdoor unmanned aerial vehicles. This paper presents the design procedures and implementation of super-twisting sliding mode controller, which is a robust nonlinear controller. The robust controller is applied to an over-actuated quadrotor manipulator with four tiltable rotors. A serial manipulator with two links is mounted on the bottom of the quadrotor. The quadrotor possesses the property of decoupling its position and orientation. The main contribute of this paper is that a super-twisting sliding mode controller in vector form is designed and applied to the control of an over-actuated quadrotor manipulator. Another contribution of this paper is that the stability of the closed-loop system is proved by utilizing the Lyapunov stability theory. It is confirmed that the performance of the super-twisting sliding mode controller is superior to that of the conventional backstepping controller in terms of convergence rate and accuracy by simulations.