Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : KLIK: Kajian Ilmiah Informatika dan Komputer

Classification of Palm Oil Ripeness Level using DenseNet201 and Rotational Data Augmentation Nabyl Alfahrez Ramadhan Amril; Yanto, Febi; Elvia Budianita; Suwanto Sanjaya; Fadhilah Syafria
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 4 No. 6 (2024): Juni 2024
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v4i6.1937

Abstract

Indonesia is a country in Southeast Asia with the largest palm oil production in the world. Based on Indonesian Central Statistics Agency data, in 2022 Indonesia produced 46,8 million Tons of Crude Palm Oil (CPO). To produce a high-quality oil, palm oil fruit must be harvested in an optimal condition. But, even a experienced and trained person found it difficult to identify whether the fruit is ripe or raw. In this research theres two type of classification which is ripe and raw, this is because palm oil milling factory only accept pure ripe palm oil fruit and not half ripe or almost ripe. The data that is used in this reseacrh was collected from two sources, the first source is from https://www.kaggle.com/datasets/ahmadfathan/kematangansawit and the second source was collected manually by going to palm oil plantation. The total of data that is used for this research is 1000 data and 1000 augmented data. Dense Convolutional Network (DenseNet) that is used in this research is a CNN architecture that was first introduced in 2017. Compared to DenseNet121 and DenseNet169, DenseNet201 is proven to have a higher level of accuracy. The 90:10 data scheme succeeded in getting the highest accuracy with a total accuracy of 97.50% with a learning rate of 0.001 and a dropout of 0.01