Habib M. Mohamad
Faculty of Engineering, Universiti Malaysia Sabah, 88400 UMS road, Kota Kinabalu, Sabah,

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Civil Engineering Journal

A Consistency Check of Concrete Compressive Strength using Pearson’s Correlation Coefficient Habib M. Mohamad; N. S. Afizah Asman; A. K. Mirasa; I. Saad; N. Bolong; Steven C. C. K.; Siti Nooraiin M. R.
Civil Engineering Journal Vol 7, No 3 (2021): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091672

Abstract

The efficiency of the concrete ready mix service provider is undoubtedly and has become a widespread trend among contractors in which facilitates and eliminated a large budget surplus in maintenance, operating costs and is preferred as it reflects more efficient asset utilization. However, the quality assurance of concrete supplied is always raised associated with the inconsistencies of concrete compressive strength at the age of 28 days. The objective(s) of this study are to determine the correlations between the compressive strength of ready mix concrete, to evaluate the consistencies of the results and to identify the irregular sources that lead to the inconsistencies. Based on the compressive strength values obtained from the existing experimental data using different concrete mixes from the batching plant, a statistical analysis was conducted. A total of 90 concrete cubes specimens were attained from 15 concrete batches. A correlation analysis was conducted using the Pearson Correlation calculation to check the consistency of concrete compressive strength. The calculation showed the Pearson correlation coefficient of this study is +0.990. This indicated that there are significant linear relationship exists between the concrete compressive strength and the density of concrete batches which is positively high. In conclusion, the analysis reveals that the design of ready mix concrete compressive strength is in high consistencies and acceptable in practices for the proposed mix design to the contractor. Doi: 10.28991/cej-2021-03091672 Full Text: PDF
A Study on Linear Shrinkage Behavior of Peat Soil Stabilized with Eco-Processed Pozzolan (EPP) Mohamad S. Sulaiman; Habib M. Mohamad; Anis A. Suhaimi
Civil Engineering Journal Vol 8, No 6 (2022): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-06-05

Abstract

Peat soil incorporated materials from fragmented organic constituents that originated in submerged wetlands. Peat soil has a particular index property that accounts for more than 75% of its organic content. Due to its low shear strength, high moisture content, high compressibility, low specific gravity, restricted bearing capacity, irregular shrinkage, and instability, peat soil is interpreted as a challenging soil for the building industry. The purpose of this study is to look at the index properties of Klias, Beaufort peat soil, and eco processed pozzolan (EPP), as well as to investigate the strengthening and stiffening effects of EPP stabilization treatment on peat soil and the association between EPP and linear shrinkage effects of peat. The linear shrinkage used to measure the shrinkage behaviour of peat soil consists of untreated samples, namely peat soil, and treated samples, which are peat soil in addition to EPP with a concentration of 20% and 30%, respectively. A scanning electron microscope (SEM) is employed to produce images of a sample by scanning the surface of an untreated peat sample and treated peat samples with EPP. High moisture content with an average of 580% was reported for the KBpt area. EPP can potentially help to reduce the shrinkage by almost 66.66%. Additionally, the results showed that by adding EPP as filler material to the peat soil, shrinkage behaviour decreases significantly for untreated peat soil and treated peat soil with EPP, with 4.29% reduced to 1.43% significantly. Correspondingly, the crystallization process occurred between peat soil and EPP, which contributed to the reduction of shrinkage and tension crack in peat soil and produced Muscovite, which is appeared and identified as mineral that important in rock-forming mineral. Doi: 10.28991/CEJ-2022-08-06-05 Full Text: PDF