S Safinaz
sir.mvit Bangalore

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

An Adaptive Scheme to Achieve Fine Grained Video Scaling S Safinaz; A. V. Ravi Kumar
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 1: October 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i1.pp43-58

Abstract

A robust Adaptive Reconstruction Error Minimization Convolution Neural Network ( ARemCNN) architecture introduced to provide high reconstruction quality from low resolution using parallel configuration. Our proposed model can easily train the bulky datasets such as YUV21 and Videoset4.Our experimental results shows that our model outperforms many existing techniques in terms of PSNR, SSIM and reconstruction quality. The experimental results shows that our average PSNR result is 39.81 considering upscale-2, 35.56 for upscale-3 and 33.77 for upscale-4 for Videoset4 dataset which is very high in contrast to other existing techniques. Similarly, the experimental results shows that our average PSNR result is 38.71 considering upscale-2, 34.58 for upscale-3 and 33.047 for upscale-4 for YUV21 dataset.
Real-Time Video Scaling Based on Convolution Neural Network Architecture S Safinaz; AV Ravi kumar
Indonesian Journal of Electrical Engineering and Computer Science Vol 7, No 2: August 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v7.i2.pp381-394

Abstract

In recent years, video super resolution techniques becomes mandatory requirements to get high resolution videos. Many super resolution techniques researched but still video super resolution or scaling is a vital challenge. In this paper, we have presented a real-time video scaling based on convolution neural network architecture to eliminate the blurriness in the images and video frames and to provide better reconstruction quality while scaling of large datasets from lower resolution frames to high resolution frames. We compare our outcomes with multiple exiting algorithms. Our extensive results of proposed technique RemCNN (Reconstruction error minimization Convolution Neural Network) shows that our model outperforms the existing technologies such as bicubic, bilinear, MCResNet and provide better reconstructed motioning images and video frames. The experimental results shows that our average PSNR result is 47.80474 considering upscale-2, 41.70209 for upscale-3 and 36.24503 for upscale-4 for Myanmar dataset which is very high in contrast to other existing techniques. This results proves our proposed model real-time video scaling based on convolution neural network architecture’s high efficiency and better performance.