A. V. Ravi Kumar
Sjbit, VTU, Bangalore, India

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

An Adaptive Scheme to Achieve Fine Grained Video Scaling S Safinaz; A. V. Ravi Kumar
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 1: October 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i1.pp43-58

Abstract

A robust Adaptive Reconstruction Error Minimization Convolution Neural Network ( ARemCNN) architecture introduced to provide high reconstruction quality from low resolution using parallel configuration. Our proposed model can easily train the bulky datasets such as YUV21 and Videoset4.Our experimental results shows that our model outperforms many existing techniques in terms of PSNR, SSIM and reconstruction quality. The experimental results shows that our average PSNR result is 39.81 considering upscale-2, 35.56 for upscale-3 and 33.77 for upscale-4 for Videoset4 dataset which is very high in contrast to other existing techniques. Similarly, the experimental results shows that our average PSNR result is 38.71 considering upscale-2, 34.58 for upscale-3 and 33.047 for upscale-4 for YUV21 dataset.