Tiara Anggita
Institut Teknologi Sepuluh Nopember Surabaya

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Indonesian sign language recognition using kinect and dynamic time warping Wijayanti Nurul Khotimah; Nanik Suciati; Tiara Anggita
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 1: July 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i1.pp495-503

Abstract

Sign Language Recognition System (SLRS) is a system to recognise sign language and then translate them into text. This system can be developed by using a sensor-based technique. Some studies have implemented various feature extraction and classification methods to recognise sign language in the different country. However, their systems were user dependent (the accuracy was high when the trained and the tested user were the same people, but it was getting worse when the tested user was different to the trained user). Therefore in this study, we proposed a feature extraction method which is invariant to a user. We used the distance between two users’ skeleton instead of using the users’ skeleton positions because the skeleton distance is independent to the user posture. Finally, forty-five features were extracted in this proposed method. Further, we classified the features by using a classification method that is suitable with sign language gestures characteristic (time-dependent sequence data). The classification method is Dynamic Time Wrapping. For the experiment, we used twenty Indonesian sign languages from different semantic groups (greetings, questions, pronouns, places, family and others) and different gesture characteristic (static gesture and dynamic gesture). Then the system was tested by a different user with the user who did the training. The result was promising, this proposed method produced high accuracy, reach 91% which shows that this proposed method is user independent.