Mohd Ikhwan Muhammad Ridzuan
Universiti Malaysia Pahang

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Monte Carlo simulation convergences’ percentage and position in future reliability evaluation Nur Nabihah Rusyda Roslan; NoorFatin Farhanie Mohd Fauzi; Mohd Ikhwan Muhammad Ridzuan
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6218-6227

Abstract

Reliability assessment is a needed assessment in today's world. It is required not only for system design but also to ensure the power delivered reaches the consumer. It is usual for fault to occur, but it is best if the fault can be predicted and the way to overcome it can be prepared in advance. Monte Carlo simulation is a standard method of assessing reliability since it is a time-based evaluation that nearly represents the actual situation. However, sequential Monte Carlo (SMC) typically took long-time simulation. A convergence element can be implemented into the simulation to ensure that the time taken to compute the simulation can be reduced. The SMC can be done with and without convergence. SMC with convergence has high accuracy compared to the SMC without convergence, as it takes a long time and has a high possibility of not getting accurate output. In this research, the SMC is subjected to five different convergence items to determine which converge simulation is the fastest while providing better performance for reliability evaluation. There are two types of convergence positions, namely input convergence and output convergence. Overall, output convergence shows the best result compared to input convergence.