Bachir Benhala
Moulay Ismail University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

An optimal design of current conveyors using a hybrid-based metaheuristic algorithm Soufiane Abi; Bachir Benhala
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6653-6663

Abstract

This paper focuses on the optimal sizing of a positive second-generation current conveyor (CCII+), employing a hybrid algorithm named DE-ACO, which is derived from the combination of differential evolution (DE) and ant colony optimization (ACO) algorithms. The basic idea of this hybridization is to apply the DE algorithm for the ACO algorithm’s initialization stage. Benchmark test functions were used to evaluate the proposed algorithm’s performance regarding the quality of the optimal solution, robustness, and computation time. Furthermore, the DE-ACO has been applied to optimize the CCII+ performances. SPICE simulation is utilized to validate the achieved results, and a comparison with the standard DE and ACO algorithms is reported. The results highlight that DE-ACO outperforms both ACO and DE.
Radio-frequency circular integrated inductors sizing optimization using bio-inspired techniques Imad El hajjami; Bachir Benhala
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6320-6331

Abstract

In this article, a comparative study is accomplished between three of the most used swarm intelligence (SI) techniques; namely artificial bee colony (ABC), ant colony optimization (ACO), and particle swarm optimization (PSO) to carry out the optimal design of radio-frequency (RF) spiral inductors, the three algorithms are applied to the cost function of RF circular inductors for 180 nm beyond 2.50 GHz, the aim is to ensure optimal performance with less error in inductance, and a high-quality factor when compared to electromagnetic simulation. Simulation experiments are achieved and performances regarding convergence velocity, robustness, and computing time are checked. Also, this paper shows an impact study of technological parameters and geometric features on the inductance and the quality factor of the studied integrated inductor. The building method of constraints design with algorithms used has given good results and electromagnetic simulations are of good accuracy with an error of 2.31% and 4.15% on the quality factor and inductance respectively. The simulation shows that ACO provides more accuracy in circuit size and fewer errors than ABC and PSO, while PSO and ABC are better in terms of convergence velocity.