Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Journal of Computer System and Informatics (JoSYC)

Penerapan Algoritma Naïve Bayes Classifier Dalam Klasifikasi Status Gizi Balita dengan Pengujian K-Fold Cross Validation Nurainun Nurainun; Elin Haerani; Fadhilah Syafria; Lola Oktavia
Journal of Computer System and Informatics (JoSYC) Vol 4 No 3 (2023): May 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v4i3.3414

Abstract

Nutritional status is a condition related to nutrition that can be measured and is the result of a balance between nutritional needs in the body and nutritional intake from food. In Indonesia, there are still many nutritional problems such as malnutrition and other nutritional problems. This research will use the Naïve Bayes Classifier algorithm with K-Fold Cross Validation testing. The data used is data on the nutritional status of toddlers in August 2022 at the Rambah Samo I Health Center. Attributes in this study include Gender, Birth Weight, Birth Height, Age at Measurement, Weight, Height, ZS BB/U, BB/U, ZS TB/U, and TB/U. Determination of the nutritional status of toddlers in this study was based on the BB/TB index which consisted of 6 classes, namely severely wasted, wasted, normal, possible risk of overweight, overweight, and obese. From the research conducted, it was found that the Naïve Bayes Classifier algorithm with K-Fold Cross Validation can correctly classify the nutritional status of toddlers. From data processing using 10-Fold Cross Validation on the Naïve Bayes Classifier algorithm, it is known that the highest accuracy value is 82.94% in the 5th iteration, while the lowest accuracy value is 65.88% in 6th iteration. With an average overall accuracy value of 75.47%. Meanwhile, the average precision value obtained is 81.36% and the average recall value is 75.47%.
Penerapan Algoritma Mean-Shift Pada Clustering Penerimaan Bantuan Pangan Non Tunai Rizuan Rizuan; Elin Haerani; Jasril Jasril; Lola Oktavia
Journal of Computer System and Informatics (JoSYC) Vol 4 No 4 (2023): August 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v4i4.3876

Abstract

Kemiskinan merupakan kondisi individu atau sekumpulan individu yang tidak memiliki akses ke sumber daya yang memadai untuk memenuhi kebutuhan dasar serta menjalani kehidupan yang baik. Tujuan bantuan pangan non tunai adalah untuk memberikan bantuan pangan kepada yang membutuhkannya melalui metode non tunai, seperti kartu debit atau kartu elektronik. Penelitian ini bertujuan menemukan pola karakteristik calon penerima Bantuan Pangan Non Tunai (BPNT) berdasarkan kriteria dari Dinas Sosial Kota Pekanbaru. Berdasarkan hasil pengujian menggunakan Silhouette Score didapatkan kluster terbaik adalah 2 kluster dengan bandwidth 285 dan Silhouette Score 0.95 klaster 1 memiliki 680 data, dan klaster 2 memiliki 2 data. Hasil claster 1 memiliki pola status penguasaan tempat tinggal berstatus bebas sewa dan kontrak/sewa, untuk jenis lantai terluas adalah batu merah/ sementara, jenis adalah dinding plasteran dan jenis air konsumsi dari leding meteran. Sedangkan hasil cluster 2 memiliki pola penguasaan tempat tinggal berstatus milik sendiri, untuk jenis lantai adalah keramik, jenis dinding adalah tembok dan konsumsi air dari sumur bor pompa.
Penerapan Metode Clustering Dengan K-Means Untuk Memetakan Potensi Tanaman Padi di Sumatera Irma Sanela; Alwis Nazir; Fadhilah Syafria; Elin Haerani; Lola Oktavia
Journal of Computer System and Informatics (JoSYC) Vol 5 No 1 (2023): November 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v5i1.4523

Abstract

Rice plants are the primary source of rice, the staple food for the majority of the Indonesian population. Despite the presence of other food alternatives, rice remains irreplaceable for those accustomed to consuming rice. According to data from the Food and Agriculture Organization of the United Nations (FAO) in 2018, Indonesia is the third-largest rice producer in the world, with a total production of 59.2 million tons. However, urban and agricultural spatial planning is not yet fully integrated, resulting in often conflicting decisions in land use planning for agriculture and urban development. To meet the rice demand in Sumatra, efforts are needed to increase rice production in each province. Therefore, this research aims to map the potential for rice cultivation in Sumatra based on production and harvest results from 1993 to 2020. The method used in this study is K-Means, which allows the grouping of rice potential areas into three categories: high, medium, and low. The research results produced three clusters, evaluated using the Davies Bouldin Index (DBI) with a value of 0.3943. The clustering results indicate that Cluster 0 contains 92 areas with a high success rate, Cluster 2 comprises 84 areas with a medium success rate, and Cluster 1 consists of 48 areas with a low success rate. The category of low success rate is found in Cluster 1 with 48 areas. Cluster 0 includes Aceh, North Sumatra, West Sumatra, South Sumatra, and Lampung within certain time periods. Cluster 1 encompasses other areas with different characteristics. Cluster 2 includes the provinces of Riau, Jambi, and Bengkulu.
Prediksi Jumlah Perceraian Menggunakan Metode Support Vector Regression (SVR) Eka Suryani Indra Septiawati; Elvia Budianita; Fitri Insani; Lola Oktavia
Journal of Computer System and Informatics (JoSYC) Vol 5 No 1 (2023): November 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v5i1.4613

Abstract

The increasing number of divorces poses an increasingly significant social challenge in Indonesia, including in the city of Pekanbaru. The impact of these divorces on the adolescent population can have negative effects on their emotional and psychological well-being, as well as their ability to interact socially and engage in the learning process. This study utilizes monthly divorce data from 2015 to April 2023 to conduct time series analysis and applies the Support Vector Regression (SVR) method to predict the number of divorces in the city of Pekanbaru. Three types of SVR kernels, namely linear, polynomial, and radial basis function (RBF), are evaluated and compared to find the kernel with the best Mean Squared Error (MSE) results. Through grid search analysis, optimal parameter values for each kernel are determined. The test results indicate that the SVR model with a polynomial kernel provides more accurate predictions with an MSE of 0.010228, compared to the linear kernel (MSE = 0.012767) and the RBF kernel (MSE = 0.010812).