Vui Van Cao
1) Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT), District 10, Ho Chi Minh City, Vietnam. 2) Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City,

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Civil Engineering Journal

Bond-slip Behaviour of NSM GFRP Bars in Reinforced Recycled-Aggregate Concrete: Experiments and a Modified Model Anh-Tuan Le; Thuy Ninh Nguyen; Vui Van Cao
Civil Engineering Journal Vol 9, No 2 (2023): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-02-01

Abstract

Bond-slip behaviour of glass fiber-reinforced polymer (GFRP) bars embedded in conventional concrete has been widely investigated. In contrast, the bond-slip behaviour of near-surface mounted (NSM) GFRP bars bonded in reinforced recycled aggregate concrete (RAC) seems to be less explored, while recycled materials have been increasingly used due to reasons of environmental pollution and resource exhaustion. This study aimed to experimentally and theoretically examine the bond-slip behaviour of NSM GFRP bars in reinforced RAC under monotonic and cyclic loadings. To achieve this aim, twenty-four tests were performed, which were divided into two groups by monotonic and cyclic loadings. In each group, twelve tests were performed on ten reinforced RAC specimens and two reinforced normal aggregate concrete (NAC) specimens. The test results confirmed the brittle shear failure of concrete in the proximity of a resin-concrete surface. Bond-slip behaviour can be characterized by nonlinear and linear branches, in which the linear branch dominates the behaviour. Under monotonic and cyclic loadings, the average slips of GFRP bars in reinforced RAC were 0.238 and 0.284 mm, and their coefficients of variation (COV) were relatively large at 0.142 and 0.130, respectively. In contrast, ultimate loads had a relatively low COV of around 0.038. The effect of cyclic loading significantly increased the ultimate slip by 19.3%, whereas it negligibly reduced the ultimate load; consequently, the stiffness was reduced by 19.4%. A modified smooth model was proposed to predict the bond-slip behaviour of NSM GFRP bars in reinforced RAC under monotonic and cyclic loadings. The simplicity and accuracy of the model can be useful for engineers in structural retrofitting using NSM FRP technique. Doi: 10.28991/CEJ-2023-09-02-01 Full Text: PDF
Experimental and Analytical Study on Postfire Reinforced Concrete Beams Retrofitted with CFRP in Flexure and Shear Vu Nguyen Nguyen; Vui Van Cao
Civil Engineering Journal Vol 9, No 7 (2023): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-07-05

Abstract

In this study, experiments were performed on carbon fiber reinforced polymer (CFRP) retrofitted postfire reinforced concrete (RC) beams, followed by theoretical analyzes. Experiments were conducted on eleven RC beams, which were exposed to different fire durations and retrofitted with CFRP in flexure and shear. The experimental results indicated that fire shifted the flexure failure to the flexure-shear failure of postfire RC beams. CFRP retrofitted postfire RC beams experienced progressive peeling-off failure. FRP retrofitting significantly increased the yield deflection by 58.2−97.3% but decreased the ultimate deflection by 43.0−55.5% compared with that of the control beam. Consequently, the ductility was reduced by 69.7−74.7%, categorized as low ductility. CFRP retrofitting successfully increased the strengths of 30-min postfire beams by up to 23.1% higher than those of the control beam. Fire significantly decreased the stiffness of postfire beams by 46.4−49.2% compared with that of the control beam, whereas CFRP retrofitting did not fully recover the stiffness of postfire beams. Finally, a simple model of the moment capacity of postfire beams without/with CFRP retrofits was developed based on the practicability of limited data feasibly obtained from real fires. The proposed model, with its simplicity, practicability, and reasonable accuracy, can be a useful tool for structural engineers in the FRP retrofitting of postfire RC structures. Doi: 10.28991/CEJ-2023-09-07-05 Full Text: PDF