Sama Salam Samaan
University of Technology

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

Feature-based real-time distributed denial of service detection in SDN using machine learning and Spark Sama Salam Samaan; Hassan Awheed Jeiad
Bulletin of Electrical Engineering and Informatics Vol 12, No 4: August 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i4.4711

Abstract

Recently, software defined networking (SDN) has been deployed extensively in diverse practical domains, providing a new direction in network management by separating the control plane from the data plane. Nevertheless, SDN is vulnerable to distributed denial of service (DDoS) attacks resulting from its centralized controller. Several studies have been suggested to address the DDoS attacks in SDN utilizing machine learning approaches. However, these approaches are resource-intensive and cause performance degradation since they cannot perform effectively in large-scale SDN networks that generate vast traffic statistics. To handle all these challenges, we build a DDoS attack detection model in SDN using Spark as a big data tool to overcome the limitations of conventional data processing methods. Four machine learning algorithms are employed. The decision tree (DT) is elected to be used for real-time deployment based on the performance results, which indicates that it has the best accuracy of 0.936. The model performance is compared with state-of-the-art and shows an overall better performance.