Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Fisika Unand

Optimisasi Ukuran Teras High Temperature Gass-cooled Reactor (HTGR) dengan Daya 30 MWt Tipe Pebble Bed Berbasis Bahan Bakar Uranium Armanita, Desi; Fitriyani, Dian; Setiadipura, Topan
Jurnal Fisika Unand Vol 9 No 1 (2020)
Publisher : Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jfu.9.1.100-109.2020

Abstract

Telah dilakukan optimasi ukuran teras Reaktor daya Eksperimental (RDE). Optimasi ini bertujuan untuk memperoleh ukuran teras yang optimal untuk RDE 30 MWt berdasarkan aspek neutronik antara lain discharge burn up, fuel residence time dan distribusi daya dan aspek keselamatan. Pada tahap awal dilakukan optimasi pass bahan bakar. Pass bahan bakar menyatakan jumlah sirkulasi bahan bakar ke teras reaktor dan parameter optimasi pass adalah nilai power peaking factor mendekati 1, discharge burn up tinggi serta memiliki temperatur puncak bahan bakar setelah DLOFC rendah. Berdasarkan parameter tersebut didapatkan pass optimal adalah 5 pass. Variasi ukuran teras ditentukan dengan dua cara, yaitu variasi ukuran teras pada volume tetap dan variasi tinggi teras pada diameter tetap. Tahap selanjutnya, terhadap ukuran teras yang optimal, dilakukan optimasi fraksi enrichment dan heavy metal loading bahan bakar. Dari hasil perhitungan diperoleh bahwa pada volume tetap (5 m3) parameter-parameter neutronik bernilai optimal jika ukuran diameter teras 1,5 m dan tinggi 2,83 m, sedangkan pada diameter teras tetap (1,8 m) parameter-parameter neutronik optimal pada ukuran tinggi teras 3,931 m.  Pada kedua ukuran teras ini aspek keselamatan, discharge burn up dan fuel residence time optimal pada enrichment 17% dan heavy metal loading 6 grU/pebble. Core size optimization of Experimental Power Reactor (EPR) has been done. This optimization aims to obtain the optimal core size for the RDE 30 MWt based on the neutronik aspect among other discharge burn ups, fuel residence time, power distribution and safety aspect. In the early stages the fuel pass optimization is done. The fuel pass is the amount of fuel circulation to the reactor core and the pass optimization parameter is the value of power peaking factor approaching 1, high discharge burnup as well as having a fuel peak temperature after DLOFC is low. According to the parameters, the optimal pass is 5 passes. The variation in the size of the core is determined in two ways, which is the core size variation on fixed volumes and a high variation of the core at fixed diameter. The next stage, against the optimal core size, carried out the optimization of the fraction of enrichment and heavy metal loading fuel.  From the results of the calculations obtained that on a fixed volume (5 m3) neutronik parameters are optimal if the size of the core diameter is 1.5 m and height 2.83 m, while on the fixed diameter of the ratio (1.8 m) The optimal neutronik parameters of on the size Height of core 3.931 m.  On both of these core sizes are safety aspects, discharge burn up and fuel residence time is optimal on the enrichment of 17% and heavy metal loading 6 grU/pebble.
Analisis Neutronik dan Temperatur Bahan Bakar Setelah Depressurized Loss of Forced Cooled (DLOFC) pada Pebble Bed Reactor (PBR) dengan Upgrade Daya Rosyidah, Amalia; Fitriyani, Dian; Setiadipura, Topan
Jurnal Fisika Unand Vol 9 No 2 (2020)
Publisher : Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jfu.9.2.231-237.2020

Abstract

Pada penelitian ini dilakukan analisis neutronik dan temperatur bahan bakar setelah DLOFC pada Pebble Bed Reactor (PBR) dengan upgrade daya. Reaktor acuan yang digunakan dalam penelitian ini yaitu HTR-PM. Penelitian ini bertujuan untuk memperoleh desain reaktor dengan daya 300 MWt. Perhitungan dalam penelitian ini menggunakan software PEBBED6 code. Pada tahap awal dilakukan upgrade daya pada desain default HTR-PM. Parameter neutronik yang diperhatikan dalam penelitian ini yaitu nilai burnup yang tinggi dan temperatur puncak bahan bakar setelah DLOFC tidak melebihi 1620 oC. Berdasarkan capaian kedua parameter tersebut, daya pada desain default HTR-PM hanya dapat ditingkatkan hingga 260 MWt. Selanjutnya perhitungan pada daya yang di-upgrade disertai dengan pengaturan pada enrichment dan HM loading. Dari hasil pengamatan disimpulkan bahwa dengan enrichment dan HM loading yang tinggi maka semakin tinggi densitas bahan fisil sehingga dapat memperbesar nilai burnup dan juga temperatur puncak setelah DLOFC. Selanjutnya dilakukan optimasi ketinggian dan diameter teras reaktor dengan volume teras default (77,44 m3). Diameter teras yang diperkecil dapat menghantarkan panas hasil reaksi fisi keluar teras lebih maksimal. Kemudian dilakukan pengaturan enrichment dan HM loading bahan bakar kembali untuk mendapatkan daya maksimal. Desain optimal pada penelitian ini diperoleh untuk daya 300 MWt dengan HM loading 6 gU/pebble, enrichment 8,5% dan tinggi teras 14,64 m yang dapat menghasilkan nilai burnup 77,11 MWd/Kg.HM. In this research neutron and fuel temperature analysis is done after DLOFC on the Pebble Bed Reactor (PBR) with a power upgrade. The reference reactor used in this study is HTR-PM. This study aims to obtain a reactor design with 300 MWt of power. The calculation in this study use the PEBBED6 code software. In the initial stage, a power upgrade is performed on the default HTR-PM design. The neutronic parameters considered in this study are high burnup values and peak temperature after DLOFC do not exceeding 1620 oC. Based on the achievement of the two parameters, the power in the default HTR-PM design can only be increased up to 260 MWt. Furthermore, calculation on the upgraded power are accompanied by setting on the enrichment and HM loading. The next step is optimizing the height and diameter of the reactor core by maintaining the default core volume (77.44 m3). The reduced diameter of the terrace can deliver maximum heat from the fission reaction outside the terrace. Then the enrichment and HM loading of the fuel are regulated to get maximum power. The optimal design in this study was obtained for 300 MWt power with HM loading of 6 gU/pebble, 8.5% enrichment and a terrace height of 14.64 m which can produce a burnup value of 77.11 MWd/Kg.HM.