Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Informatics and Digital Expert (INDEX)

Deteksi Ujaran Kebencian dengan Metode Klasifikasi Naïve Bayes dan Metode N-Gram pada Dataset Multi-Label Twitter Berbahasa Indonesia Yazid, Rija Muhamad; Umbara, Fajri Rakhmat; Sabrina, Puspita Nurul
Informatics and Digital Expert (INDEX) Vol. 4 No. 2 (2022): INDEX, November 2022
Publisher : LPPM Universitas Perjuangan Tasikmalaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36423/index.v4i2.894

Abstract

Ujaran kebencian adalah ungkapan atau bahasa yang digunakan untuk mengekspresikan kebencian terhadap seseorang atau sekelompok orang. Ujaran kebencian juga memiliki tingkatan ancaman, semakin tinggi tingkat ancaman ujaran kebencian maka akan semakin luas dan cepat penyebarannya sehingga dapat menimbulkan konflik antar individu sampai konflik antar kelompok. Untuk dapat mendeteksi dan mengklasifikasikan ujaran kebencian sekaligus tingkat ancamannya dalam penelitian ini digunakan dataset multi-label dari penelitian sebelumnya dengan menggunakan label yang masuk kedalam topik ujaran kebencian dan tingkat ancaman dengan total sebanyak 4 label. Dalam menyelesaikan permasalahan multi-label tersebut digunakan metode Naïve Bayes sebagai metode klasifikasi dan metode Label Power-set sebagai metode transformasi data, dalam penelitian ini juga digunakan pembobotan TF-IDF sekaligus melakukan beberapa skenario penelitian berdasarkan metode ekstraksi fitur n-gram. Hasil terbaik yang didapatkan berdasarkan hasil evaluasi F-score adalah sebesar 64,957% ketika menggunakan kombinasi metode ekstraksi fitur word unigram, word bigram dan character quadgram. Dari penelitian ini juga didapatkan bahwa semakin banyak fitur yang digunakan maka semakin baik nilai hasil evaluasinya terhadap jenis dataset yang digunakan.
Klasifikasi Daftar Ulang Calon Mahasiswa Baru Dengan Menggunakan Metode Klasifikasi Naive Bayes Pikriyansah, Reji; Umbara, Fajri Rahmat; Sabrina, Puspita Nurul
Informatics and Digital Expert (INDEX) Vol. 4 No. 2 (2022): INDEX, November 2022
Publisher : LPPM Universitas Perjuangan Tasikmalaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36423/index.v4i2.912

Abstract

Registrasi ulang merupakan prosedur yang wajib dilakukan oleh calon mahasiswa yang berkeinginan menjadi mahasiwa aktif dan sudah lulus seleksi. Kebanyakan mahasiswa yang tidak ingin melanjutkan proses registrasi ulang memilih menunggu batas akhir registrasi ulang daripada menghubungi pihak Universitas. Untuk memprediksi calon mahasiwa yang akan melakukan registrasi ulang penellitian ini menggunakan metode Naïve Bayes tehadap dataset calon mahasiwa. Penelitian ini menggunakan dua dataset yang mana merupakan dataset dengan kelas yang tidak seimbang dan dataset dengan kelas yang seimbang yang diseimbangkan menggunakan metode Undersampling, ditambah dengan beberapa skenario klasifikasi dengan melakukan penyeleksian atribut menggunakan metode Mutual information. Hasil akurasi tertinggi yang didapat adalah 63.83% pada dataset dengan kelas yang tidak seimbang dengan menggunakan 14-16 atribut dan 63.53% pada dataset dengan kelas yang seimbang dengan menggunakan 15-16 atribut. Nilai Mutual Information kedua dataset sangatlah rendah yaitu dibawah 0.09. Berdasarkan hasil yang di dapat dari setiap pengujian skenario nilai Mutual Information yang rendah dan rentang nilai yang berdekatan kemungkinan besar mengakibatkan tingkat akurasi menurun setiap dilakukan proses penyeleksian atribut.
Deteksi Ujaran Kebencian dengan Metode Klasifikasi Naïve Bayes dan Metode N-Gram pada Dataset Multi-Label Twitter Berbahasa Indonesia Yazid, Rija Muhamad; Umbara, Fajri Rakhmat; Sabrina, Puspita Nurul
Informatics and Digital Expert (INDEX) Vol. 4 No. 2 (2022): INDEX, November 2022
Publisher : LPPM Universitas Perjuangan Tasikmalaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36423/index.v4i2.894

Abstract

Ujaran kebencian adalah ungkapan atau bahasa yang digunakan untuk mengekspresikan kebencian terhadap seseorang atau sekelompok orang. Ujaran kebencian juga memiliki tingkatan ancaman, semakin tinggi tingkat ancaman ujaran kebencian maka akan semakin luas dan cepat penyebarannya sehingga dapat menimbulkan konflik antar individu sampai konflik antar kelompok. Untuk dapat mendeteksi dan mengklasifikasikan ujaran kebencian sekaligus tingkat ancamannya dalam penelitian ini digunakan dataset multi-label dari penelitian sebelumnya dengan menggunakan label yang masuk kedalam topik ujaran kebencian dan tingkat ancaman dengan total sebanyak 4 label. Dalam menyelesaikan permasalahan multi-label tersebut digunakan metode Naïve Bayes sebagai metode klasifikasi dan metode Label Power-set sebagai metode transformasi data, dalam penelitian ini juga digunakan pembobotan TF-IDF sekaligus melakukan beberapa skenario penelitian berdasarkan metode ekstraksi fitur n-gram. Hasil terbaik yang didapatkan berdasarkan hasil evaluasi F-score adalah sebesar 64,957% ketika menggunakan kombinasi metode ekstraksi fitur word unigram, word bigram dan character quadgram. Dari penelitian ini juga didapatkan bahwa semakin banyak fitur yang digunakan maka semakin baik nilai hasil evaluasinya terhadap jenis dataset yang digunakan.
Klasifikasi Daftar Ulang Calon Mahasiswa Baru Dengan Menggunakan Metode Klasifikasi Naive Bayes Pikriyansah, Reji; Umbara, Fajri Rahmat; Sabrina, Puspita Nurul
Informatics and Digital Expert (INDEX) Vol. 4 No. 2 (2022): INDEX, November 2022
Publisher : LPPM Universitas Perjuangan Tasikmalaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36423/index.v4i2.912

Abstract

Registrasi ulang merupakan prosedur yang wajib dilakukan oleh calon mahasiswa yang berkeinginan menjadi mahasiwa aktif dan sudah lulus seleksi. Kebanyakan mahasiswa yang tidak ingin melanjutkan proses registrasi ulang memilih menunggu batas akhir registrasi ulang daripada menghubungi pihak Universitas. Untuk memprediksi calon mahasiwa yang akan melakukan registrasi ulang penellitian ini menggunakan metode Naïve Bayes tehadap dataset calon mahasiwa. Penelitian ini menggunakan dua dataset yang mana merupakan dataset dengan kelas yang tidak seimbang dan dataset dengan kelas yang seimbang yang diseimbangkan menggunakan metode Undersampling, ditambah dengan beberapa skenario klasifikasi dengan melakukan penyeleksian atribut menggunakan metode Mutual information. Hasil akurasi tertinggi yang didapat adalah 63.83% pada dataset dengan kelas yang tidak seimbang dengan menggunakan 14-16 atribut dan 63.53% pada dataset dengan kelas yang seimbang dengan menggunakan 15-16 atribut. Nilai Mutual Information kedua dataset sangatlah rendah yaitu dibawah 0.09. Berdasarkan hasil yang di dapat dari setiap pengujian skenario nilai Mutual Information yang rendah dan rentang nilai yang berdekatan kemungkinan besar mengakibatkan tingkat akurasi menurun setiap dilakukan proses penyeleksian atribut.