Fajarudin Zakariya
Universitas Dian Nuswantoro, Semarang

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : JURNAL MEDIA INFORMATIKA BUDIDARMA

Pengembangan Chatbot Kesehatan Mental Menggunakan Algoritma Long Short-Term Memory Fajarudin Zakariya; Junta Zeniarja; Sri Winarno
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 8, No 1 (2024): Januari 2024
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v8i1.7177

Abstract

Mental health has now become a crucial aspect of contemporary society, especially in Indonesia. This reflects the emotional, psychological, and social well-being of individuals, encompassing the ability to cope with stress in daily life. A comprehensive understanding of mental health has become highly important for the community to prevent the occurrence of mental health problems or disorders. The objective of this research is to design a chatbot as an information and solution hub for maintaining mental health, with the hope that the development of this chatbot can help reduce the risk of mental health-related issues. In the development process of this chatbot, the author applies the AI Project Cycle and utilizes a deep learning approach for the chatbot model. The development involves the Flask platform, and to achieve high accuracy, the model employs the Long Short-Term Memory (LSTM) architecturea type of recurrent neural network (RNN) specifically designed to handle long-term dependency issues common in complex mental health contexts. LSTM enables the model to store and access long-term contextual information, which can be highly beneficial in providing accurate solutions and understanding emotional condition changes. The trained LSTM model demonstrates an accuracy of 93%, validation accuracy of 82%, a loss of 0.3%, and validation loss of 1.6% after 200 epochs. Therefore, it can be concluded that using the LSTM algorithm for the chatbot model in this development is quite effective.