Penyakit jantung di Indonesia terutama pada usia produktif selalu terjadi kenaikan jumlah kasus. Adapun penyebab utama terjadinya kenaikan jumlah pasien jantung adalah gaya hidup dan pola makan yang tidak sehat. Meningkatnya pasien penyakit jantung juga berdampak pada penurunan taraf hidup. Dengan adanya hal tersebut, perlu adanya penelitian terkait membandingkan metode klasifikasi pada dataset penyakit jantung. Metode penelitian ini menggunakan model algoritma Support Vector Machine (SVM) dan Logistic Regression (LR). Agar penelitian mendapatkan hasil yang akurat digunakan teknik akuisisi data, pra-pemrosesan data dan transformasi data. Teknik evaluasi model yang digunakan yaitu K-Fold Cross Validation. Hasil analisis menunjukkan bahwa teknik validasi k-fold cross validation memberikan akurasi yang sama baiknya, tetapi hasil presisi relatif rendah. Algoritma SVM menghasilkan akurasi sebesar 91,57%, sedangkan LR menghasilkan akurasi sebesar 91,66%. Akan tetapi, SVM memiliki nilai presisi sebesar 61,20%, sedangkan LR memiliki presisi 54,31%.