Naftary Gathimba
Department of Civil, Construction and Environmental Engineering, Jomo Kenyatta University of Agriculture and Technology, Nairobi,

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Civil Engineering Journal

Mechanical and Microstructural Properties of Geopolymer Concrete Containing Fly Ash and Sugarcane Bagasse Ash Mohammed Ali M. Rihan; Richard O. Onchiri; Naftary Gathimba; Bernadette Sabuni
Civil Engineering Journal Vol 10, No 4 (2024): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-04-018

Abstract

Portland cement plays a vital role in construction and building projects. However, its manufacturing process releases detrimental pollutants and contributes to climate change. The environmental concerns linked to the manufacturing of conventional Portland cement, such as its high energy demands, raw material consumption, and significant CO2 emissions, have prompted the need to look for alternatives such as geopolymer or green concrete. In addition, indiscriminate disposal of waste might have a detrimental effect on the environment. This paper investigates the mechanical and microstructural properties of geopolymer concrete incorporating fly ash and sugarcane bagasse ash as primary constituents. Sugarcane bagasse ash (SCBA) was employed as a partial substitute for Fly Ash (FA), with varying proportions ranging from 5% to 20% with increments of 5%. Alkaline activators utilized were NaOH (14M) and Na2SiO3, with a ratio of 1.5. Various tests, including the slump test, compressive strength test, splitting tensile strength test, and flexural strength test, were performed. The microstructural characteristics were assessed by scanning electron microscopy (SEM), energy dispersive analysis (EDS), and X-ray diffraction analysis (XRD). The results revealed that adding sugarcane bagasse ash influenced the workability of geopolymer concrete while enhancing its mechanical properties. The research findings have shown that the mixture comprising 5% SCBA has the greatest compressive strength of 64 MPa. Doi: 10.28991/CEJ-2024-010-04-018 Full Text: PDF