Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Jurnal Ilmiah Computer Science

Advancements and Applications of Convolutional Neural Networks in Image Analysis: A Comprehensive Review Majeed Zangana, Hewa; Mohammed, Ayaz Khalid; Mustafa, Firas Mahmood
Jurnal Ilmiah Computer Science Vol. 3 No. 1 (2024): Volume 3 Number 1 July 2024
Publisher : PT. SNN MEDIA TECH PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58602/jics.v3i1.30

Abstract

Convolutional Neural Networks (CNNs) have revolutionized image analysis, extracting meaningful features from raw pixel data for accurate predictions. This paper reviews CNN fundamentals, architectures, training methods, applications, challenges, and future directions. It introduces CNN basics, including convolutional and pooling layers, and discusses diverse architectures like LeNet, AlexNet, ResNet, and DenseNet. Training strategies such as data preprocessing, initialization, optimization, and regularization are explored for improved performance and stability. CNN applications span healthcare, agriculture, ecology, remote sensing, and security, enabling tasks like object detection, classification, and segmentation. However, challenges like interpretability, data bias, and adversarial attacks persist. Future research aims to enhance CNN robustness, scalability, and ethical deployment. In conclusion, CNNs drive transformative advancements in image analysis, with ongoing efforts to address challenges and shape the future of AI-enabled technologies.