Chkouri, Mohamed Yassin
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Demographic information combined with collaborative filtering for an efficient recommendation system Nabil, Sana; Chkouri, Mohamed Yassin; Bouhdidi, Jaber El
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp5916-5925

Abstract

The recommendation system is a filtering system. It filters a collection of things based on the historical behavior of a user, it also tries to make predictions based on user preferences and make recommendations that interest customers. While incredibly useful, they can face various challenges affecting their performance and utility. Some common problems are, for example, when the number of users and items grows, the computational complexity of generating recommendations increases, which can increase the accuracy and precision of recommendations. So, for this purpose and to improve recommendation system results, we propose a recommendation system combining the demographic approach with collaborative filtering, our approach is based on users’ demographic information such as gender, age, zip code, occupation, and historical ratings of the users. We cluster the users based on their demographic data using the k-means algorithm and then apply collaborative filtering to the specific user cluster for recommendations. The proposed approach improves the results of the collaborative filtering recommendation system in terms of precision and recommends diverse items to users.
Building a recommendation system based on the job offers extracted from the web and the skills of job seekers Mgarbi, Hanae; Chkouri, Mohamed Yassin; Tahiri, Abderrahim
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6964-6971

Abstract

Recruitment, or job search, is increasingly used throughout the world by a large population of users through various channels, such as websites, platforms, and professional networks. Given the large volume of information related to job descriptions and user profiles, it is complicated to appropriately match a user's profile with a job description, and vice versa. The job search approach has drawbacks since the job seeker needs to search a job offers in each recruitment platform, manage their accounts, and apply for the relevant job vacancies, which wastes considerable time and effort. The contribution of this research work is the construction of a recommendation system based on the job offers extracted from the web and on the e-portfolios of job seekers. After the extraction of the data, natural language processing is applied to structured data and is ready for filtering and analysis. The proposed system is a content-based system, it measures the degree of correspondence between the attributes of the e-portfolio with those of each job offer of the same list of competence specialties using the Euclidean distance, the result is classified with a decreasing way to display the most relevant to the least relevant job offers.