Cung Le Thien Vu, Pham
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Comparing Mask R-CNN backbone architectures for human detection using thermal imaging Trinh, Tan Dat; Cung Le Thien Vu, Pham; The Bao, Pham
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i4.pp3962-3970

Abstract

We introduce a method for detecting humans in thermal imaging using an end-to-end deep learning model. Our objective is to optimize the human detection process in thermal imaging by investigating the mask region-based convolutional neural network (Mask R-CNN). The model, an advancement of the faster region-based convolutional neural network (Faster R-CNN), not only captures bounding boxes encompassing human subjects but also delineates segmentation masks around them. Our investigation extends to the evaluation and comparison of various convolutional neural networks for feature learning, like residual network (ResNet) and Inception ResNet, all integrated into the Mask R-CNN framework. Furthermore, the experimental results show that our proposed technique achieves high accuracy. Specifically, the Mask R-CNN model using ResNet50-V1 achieved the best results, with an F-value of 87.85%, a recall of 79.33%, and a precision of 98.41%.