Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Development of system for generating questions, answers, distractors using transformers Barlybayev, Alibek; Matkarimov, Bakhyt
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp1851-1863

Abstract

The goal of this article is to develop a multiple-choice questions generation system that has a number of advantages, including quick scoring, consistent grading, and a short exam period. To overcome this difficulty, we suggest treating the problem of question creation as a sequence-to-sequence learning problem, where a sentence from a text passage can directly mapped to a question. Our approach is data-driven, which eliminates the need for manual rule implementation. This strategy is more effective and gets rid of potential errors that could result from incorrect human input. Our work on question generation, particularly the usage of the transformer model, has been impacted by recent developments in a number of domains, including neural machine translation, generalization, and picture captioning.
Combined-adaptive image preprocessing method based on noise detection Shamshanovna, Razakhova Bibigul; Amangeldy, Nurzada; Kassymova, Akmaral; Kudubayeva, Saule; Kurmetbek, Bekbolat; Barlybayev, Alibek; Gazizova, Nazerke; Buribayeva, Aigerim
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp1584-1592

Abstract

The image processing method involves several critical steps, with image preprocessing being particularly significant. Segmentation and contour extraction on digital images are essential in fields ranging from image recognition to image enhancement in various recording devices, such as photo and video cameras. This research identifies and analyzes the main drawbacks of existing segmentation and contour extraction methods, focusing on object recognition. Not all filters effectively remove noise; some may clear areas of interest, affecting gesture recognition accuracy. Therefore, studying the impact of image preprocessing on gesture recognition outcomes is crucial for improving pattern recognition performance through more efficient preprocessing methods. This study seeks to find an optimal solution by detecting specific features during the preprocessing stage that directly influence gesture recognition accuracy. This research is a key component of the AP19175452 project, funded by the ministry of science and higher education. The project aims to create automated interpretation systems for Kazakh sign language, promoting inclusivity and technological innovation in communication aids. By addressing these challenges, the study contributes to the development of more robust and adaptive image preprocessing techniques for gesture recognition systems.