Palsapure, Pranita Niraj
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Enhancing speaker verification accuracy with deep ensemble learning and inclusion of multifaceted demographic factors Palsapure, Pranita Niraj; Rajeswari, Rajeswari; Kempegowda, Sandeep Kumar
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6972-6983

Abstract

Effective speaker identification is essential for achieving robust speaker recognition in real-world applications such as mobile devices, security, and entertainment while ensuring high accuracy. However, deep learning models trained on large datasets with diverse demographic and environmental factors may lead to increased misclassification and longer processing times. This study proposes incorporating ethnicity and gender information as critical parameters in a deep learning model to enhance accuracy. Two convolutional neural network (CNN) models classify gender and ethnicity, followed by a Siamese deep learning model trained with critical parameters and additional features for speaker verification. The proposed model was tested using the VoxCeleb 2 database, which includes over one million utterances from 6,112 celebrities. In an evaluation after 500 epochs, equal error rate (EER) and minimum decision cost function (minDCF) showed notable results, scoring 1.68 and 0.10, respectively. The proposed model outperforms existing deep learning models, demonstrating improved performance in terms of reduced misclassification errors and faster processing times.