Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Enhancing currency prediction in international e-commerce: Bayesian-optimized random forest approach using the Klarna dataset Rhouas, Sara; El Attaoui, Anas; El Hami, Norelislam
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp3177-3186

Abstract

In the ever-evolving landscape of global commerce, marked by the convergence of digital transformation and borderless markets, this research addresses the intricate challenges of currency exchange and risk management. Leveraging Bayesian optimization, the study fine-tunes the random forest algorithm using the extensive Klarna E-commerce dataset. Through systematic analysis, the research uncovers insights into managing currency prediction amid dynamic global markets. Emphasizing the role of Bayesian optimization parameters, the study reveals nuanced trade-offs in model performance. Notably, the optimal simulation, conducted with 14 iterations, 1 job, and a random state set to 684, exhibits a standout performance, showcasing a negative mean squared error (MSE) of approximately -0.9891 and an accuracy rate of 74.63%. The primary objective is to assess the impact of Bayesian optimization in enhancing the random forest algorithm's predictive capabilities, particularly in currency prediction within international e-commerce. These findings offer refined strategies for businesses navigating the intricate landscape of global finance, empowering decision-making through a comprehensive understanding of data, algorithms, and challenges in international commerce.
Analysis of big data from New York taxi trip 2023: revenue prediction using ordinary least squares solution and limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithms Rhouas, Sara; El Hami, Norelislam
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i1.pp711-718

Abstract

This study explores the prediction of taxi trip fares using two linear regression methods: normal equations (ordinary least squares solution (OLS)) and limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS). Utilizing a dataset of New York City yellow taxi trips from 2023, the analysis involves data cleaning, feature engineering, and model training. The data consists of over 12 million records, managed, and processed that involves configuring the Spark driver and executor memory to efficiently process the Parquet-format data stored on hadoop distributed file system (HDFS). Key features influencing fare amount, such as passenger count, trip distance, fare amount, and tip amount, were analyzed for correlation. Models were trained on an 80-20 train-test split, and their performance was evaluated using root-mean-square error (RMSE) and mean squared error (MSE). Results show that both methods provide comparable accuracy, with slight differences in coefficients and training time. Additionally, vendor performance metrics, including total trips, average trip distance, fare amount, and tip amount, were analyzed to reveal trends and inform strategic decisions for fleet management. This comprehensive analysis demonstrates the efficacy of linear regression techniques in predicting taxi fares and offers valuable insights for optimizing taxi operations.