Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Improving Kui digit recognition through machine learning and data augmentation techniques Nayak, Subrat Kumar; Nayak, Ajit Kumar; Mishra, Smitaprava; Mohanty, Prithviraj; Tripathy, Nrusingha; Prusty, Sashikanta
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 2: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i2.pp867-877

Abstract

Speech digit recognition research is growing decisively, and a bulk of digit recognition algorithms are used in European and a few Asian languages. Kui is a low-resourced tribal language locally used in several states of India. Despite its significance, there is not much research on Kui's speech. This research aims to present an in-depth analysis of novel Kui digit recognition using predefined machine learning (ML) techniques. For this purpose, we first gathered spoken numbers i.e. from 0 to 9 of eight different speakers containing a total of 200 words. Secondly, we choose the numbers: ଶୂନ (zero), ଏକ (one), ଦୁଇ (two), ତିନି(three), ସାରି(four), ପାସ (five), ସଅ (six), ସାତ (seven), ଆଟ (eight), ନଅ (nine). Meanwhile, we build nine different ML models to recognize Kui digits that take the Mel-frequency cepstral coefficients (MFCCs) method to extract the relevant features for model predictions. Finally, we compared the performance of ML models for both augmented and non-augmented Kui data. The result shows that the SVM+Augmentation method for Kui digit recognition combined obtained the highest accuracy of 83% than other methods. Moreover, the difficulties and potential prospects for Kui digit recognition are also highlighted in this work.
Empirical analysis of Bitcoin investment strategy: a comparison of machine learning and deep learning approach Tripathy, Nrusingha; Manchala, Yugandhar; Ghosh, Rajesh Kumar; Dash, Biswajit; Rout, Archana; Swain, Nirmal Keshari; Nayak, Subrat Kumar
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i3.pp1745-1754

Abstract

A digital currency known as a cryptocurrency uses blockchain technology to record transactions electronically, guaranteeing security and transparency. Cryptocurrencies, in contrast to conventional hard currency, are virtual or soft currencies; that do not exist in the actual world like coins or banknotes. Since all transactions occur digitally, cryptocurrencies are decentralized and frequently stand-alone from conventional financial institutions. Peer-to-peer transfers, increased anonymity, and often quicker transaction processing without middlemen are made possible by this. In this study, two machine learning models; autoregressive integrated moving average (ARIMA), extreme gradient boosting (XGBoost), and two deep learning models; long short-term memory (LSTM), bidirectional LSTM (Bi-LSTM) were compared. By employing past Bitcoin data from 2012 to 2020, we evaluated the models' mean absolute error (MAE) and root mean squared error (RMSE). Compared to other models, the Bi-LSTM model yields minimal RMSE scores of 67.18 and MAE scores of 24.73. This aids in capturing all temporal correlations, which are important for forecasting the price of Bitcoin.