Phan, Truong Ho-Viet
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Developing a restaurant recommended system via the Vietnamese food image classification Pham, Viet Hoang; Nguyen, Anh Thai; Phung, Bao The; Phan, Truong Ho-Viet
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp1711-1719

Abstract

A recommendation system is a system that recommends products and services to users based on daily online searching habits. The recommender system is applied in many fields such as job searching, health care, education, music, and tourism. However, few studies have combined computer vision and collaborative filtering to build a restaurant recommendation system in the tourism sector. In this study, we presented a solution to build a restaurant recommendation system through Vietnamese food image classification. First, we used ResNet-34 which is a variant of the convolutional neural network to classify Vietnamese food images. Then, the system applied the alternative least square technique in matrix factorization and Apache Spark in distributed computing to train the restaurant location dataset. The output was the most relevant restaurant places list to show many choices to users. The experimental datasets included the Vietnamese image and the restaurant location datasets that were collected from kaggle.com and foody.vn websites. For image classification task evaluation, we compared ResNet-34 to variants of ResNet. For the restaurant recommendation task evaluation, we compared alternative least squares with k-nearest neighbor. The comparison results show that the proposed solution is better than traditional popular models.