Jayaditya, I Ketut Adian
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Implementasi Random Forest Pada Klasifikasi Penyakit Kardiovaskular dengan Hyperparameter Tuning Grid Search Jayaditya, I Ketut Adian; Kadyanan, I Gusti Agung Gede Arya
Jurnal Nasional Teknologi Informasi dan Aplikasnya Vol 2 No 1 (2023): JNATIA Vol. 2, No. 1, November 2023
Publisher : Informatics Study Program, Faculty of Mathematics and Natural Sciences, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Cardiovascular disease have the potential to cause death if not treated right, because it interferes with the function of the heart. Machine Learning algorithm can be used to do early diagnosis of cardiovascular disease to lower the risk of death. In this study, the classification of cardiovascular disease uses the Random Forest algorithm to determine whether a person has cardiovascular disease or not. Grid Search is also used to do hyperparameter tuning to find the optimal hyperparameter for the Random Forest algorithm. The performance results of the classification model using Random Forest with Grid Search are 73.06% in accuracy, 75.15% in precision, 68.72% in recall, and 71.79% in f1-score. Keywords: Cardiovascular Disease, Random Forest, Hyperparameter Tuning, Grid Search