Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Teknik Informatika (JUTIF)

Performance Comparison of AdaBoost, LightGBM, and CatBoost for Parkinson's Disease Classification Using ADASYN Balancing Anshari, Muhammad Ridha; Saragih, Triando Hamonangan; Muliadi, Muliadi; Kartini, Dwi; Indriani, Fatma; Rozaq, Hasri Akbar Awal; Yıldız, Oktay
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 5 (2025): JUTIF Volume 6, Number 5, Oktober 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.5.4726

Abstract

Parkinson's disease is a neurodegenerative condition identified by the decline of neurons that produce dopamine, causing motor symptoms such as tremors and muscle stiffness. Early diagnosis is challenging as there is no definitive laboratory test. This study aims to improve the accuracy of Parkinson's diagnosis using voice recordings with machine learning algorithms, such as AdaBoost, LightGBM, and CatBoost. The dataset used is Parkinson's Disease Detection from Kaggle, consisting of 195 records with 22 attributes. The data was normalized with Min-Max normalization, and class imbalance was resolved with ADASYN. Results show that ADASYN-LightGBM and ADASYN-CatBoost have the best performance with 96.92% accuracy, 97.10% precision, 96.92% recall, and 96.92% F1 score. This improvement suggests that combining boosting methods and data balancing techniques can improve the accuracy of Parkinson's diagnosis. These results demonstrate the effectiveness of ADASYN in addressing data imbalance and improving the performance of boosting algorithms for medical classification problems. The findings contribute to the development of intelligent diagnostic systems in the field of medical informatics and computer science. These findings are essential for developing more accurate and efficient diagnostic tools, supporting early diagnosis and better management of Parkinson's disease.
Implementation of Ant Colony Optimization in Obesity Level Classification Using Random Forest Wardana, Muhammad Difha; Budiman, Irwan; Indriani, Fatma; Nugrahadi, Dodon Turianto; Saputro, Setyo Wahyu; Rozaq, Hasri Akbar Awal; Yıldız, Oktay
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 5 (2025): JUTIF Volume 6, Number 5, Oktober 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.5.4696

Abstract

Obesity is a pressing global health issue characterized by excessive body fat accumulation and associated risks of chronic diseases. This study investigates the integration of Ant Colony Optimization (ACO) for feature selection in obesity-level classification using Random Forests. Results demonstrate that feature selection significantly improves classification accuracy, rising from 94.49% to 96.17% when using ten features selected by ACO. Despite limitations, such as challenges in tuning parameters like alpha (α), beta (β), and evaporation rate in ACO techniques, the study provides valuable insights into developing a more efficient obesity classification system. The proposed approach outperforms other algorithms, including KNN (78.98%), CNN (82.00%), Decision Tree (94.00%), and MLP (95.06%), emphasizing the importance of feature selection methods like ACO in enhancing model performance. This research addresses a critical gap in intelligent healthcare systems by providing the first comprehensive study of ACO-based feature selection specifically for obesity classification, contributing significantly to medical informatics and computer science. The findings have immediate practical implications for developing automated diagnostic tools that can assist healthcare professionals in early obesity detection and intervention, potentially reducing healthcare costs through improved diagnostic efficiency and supporting digital health transformation in clinical settings. Furthermore, the study highlights the broader applicability of ACO in various classification tasks, suggesting that similar techniques could be used to address other complex health issues, ultimately improving diagnostic accuracy and patient outcomes.