Claim Missing Document
Check
Articles

Found 12 Documents
Search
Journal : International Journal of Industrial Engineering and Engineering Management

Green Supplier Evaluation and Selection in the Manufacturing Industry Using the Taguchi-VIKOR Methods Adedeji, Wasiu Oyediran; Olowu, Joseph Kolawole; Adeniran, Mofoluwaso Kehinde; Oyelami, Seun; Adeboye, Busayo; Rajan, John; Jose, Swaminathan; Benrajesh, Pandiaraj; Oke, Sunday Ayoola
International Journal of Industrial Engineering and Engineering Management Vol. 7 No. 1 (2025)
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/ijieem.v7i1.7778

Abstract

This paper proposes three methods for the joint optimization and selection of parameters in controlling the exhaust emission from logistics and packing industries, using the Taguchi-VIKOR, Taguchi-Pareto-VIKOR, and Taguchi-ABC-VIKOR methods. From the delta values of the Taguchi method, parameters F, E, A, B, C, and D were placed 1st, 2nd, 3rd, 4th, 5th, and 6th with delta values of 59.0066, 7.5263, 7.5261, 0.1150, 0.1113 and 0.1107, respectively. The delta ratio, delta variability, mean delta value and median delta value are 58.8959, 12.3993, and 3.8206, respectively. Furthermore, the optimal parametric setting is A1B1C1D1E1F1, which means 52 million dollars for revenue, 127 billion packing units, 0.77 optimal growth rate, 1.5 units of materials, 5581 kilotons of quantity consumed and 1 unit of carbon dioxide equivalent of packing materials. The methods are the cornerstone for evaluating the high-performing packing factor associated with greenhouse gas emissions and concurrently obtaining optimized values for packing enterprises to reduce emissions. Besides, and differently from earlier studies, methods such as Pareto, ABC, and VIKOR differentiate the alternative coupled Taguchi methods proposed in the literature. In addition, the following novel elements of the Taguchi method are introduced: Delta ratio, delta variability, mean delta value, delta/HOPV, delta/LOPV, and delta/AOPV. The results suggest that the developed methods adequately represent the optimized values and ranks obtained using the field data set from literature.
Aspect Ratio-based Taguchi Method with An Application to the Friction Stir Welding of AA6062-T6 Alloy Francis, Osita Prince; Ogunmola, Bayo Yemisi; Alozie, Nehemiah Sabinus; Oluwo, Adeyinka; Rajan, John; Jose, Swaminathan; Oke, Sunday Ayoola; Ibitoye, Ayomide Sunday
International Journal of Industrial Engineering and Engineering Management Vol. 7 No. 1 (2025)
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/ijieem.v7i1.7885

Abstract

This research proposes a new method of modified Taguchi method based on aspect ratios of the parameters integrated with the present worth method for the determination of optimal parametric setting during the friction stir welding process. As a cornerstone feature in the optimization procedure, aspect ratios are uniquely formulated where single parameters are replaced with products of parameters, squares of a particular parameter multiplied by a parameter, and only squares of each parameter information that represent inputs for the determination of the orthogonal matrix, heading to the optimal parametric setting computations, ranks, and delta determination. A wide range of 83 formulations was considered. Unlike previous research, this article accounts for multiple combinations of aspect ratios greater than the members of parameters present in the factor-level framework in the traditional setting of the Taguchi scheme. A principal result reveals that when the parameters were interchanged from A, B, and C to ABC, A2C, A2 B, A2, B2, and C2, indicating tool till angle, tool rotational speed, and welding speed for A, B and C, respectively, the optimal parametric setting was 462000 (0.rpm.mm/min), 990 (0.mm/min), 12600 (0.rpm.90), 1960000rpm, 12100mm/min2. The result assists welding engineers in implementing optimal decisions during friction stir welding activities. The findings of this study stimulate welding engineers to establish sources of poor-quality welds and optimize the outputs while reducing welding costs.