Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Robotics and Control (JRC)

Enhancing IoT Security: A Deep Learning and Active Learning Approach to Intrusion Detection Mahdi, Hawraa Fadel; Khadhim, Ban Jawad
Journal of Robotics and Control (JRC) Vol 5, No 5 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v%vi%i.22292

Abstract

In response to the escalating demand for robust security solutions in increasingly complex Internet of Things (IoT) networks, this study introduces an advanced Intrusion Detection System (IDS) leveraging both deep learning and active learning techniques. This research addresses the unique challenges posed by IoT environments, such as limited resources and diverse network components, which traditional security measures fail to adequately protect. Employing a BiLSTM model integrated with an active learning strategy, our approach achieved impressive results, including precision, recall, and F1-scores close to 1, and a total accuracy of 0.99. The inclusion of active learning enables the IDS to focus on the most informative data subsets, enhancing processing efficiency and reducing computational demands essential for IoT contexts. This method demonstrates significant promise for detecting sophisticated cyber threats and providing an effective tool for real-world applications. The performance of the proposed model has been rigorously validated on well-established cybersecurity datasets and through simulations in an IoT network environment, confirming its scalability and efficiency. Future work will address potential limitations such as computational demands and adaptability to diverse IoT device architectures, ensuring broader applicability and robustness of the IDS in varied IoT scenarios.
Enhancing IoT Security: A Deep Learning and Active Learning Approach to Intrusion Detection Mahdi, Hawraa Fadel; Khadhim, Ban Jawad
Journal of Robotics and Control (JRC) Vol. 5 No. 5 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v%vi%i.22292

Abstract

In response to the escalating demand for robust security solutions in increasingly complex Internet of Things (IoT) networks, this study introduces an advanced Intrusion Detection System (IDS) leveraging both deep learning and active learning techniques. This research addresses the unique challenges posed by IoT environments, such as limited resources and diverse network components, which traditional security measures fail to adequately protect. Employing a BiLSTM model integrated with an active learning strategy, our approach achieved impressive results, including precision, recall, and F1-scores close to 1, and a total accuracy of 0.99. The inclusion of active learning enables the IDS to focus on the most informative data subsets, enhancing processing efficiency and reducing computational demands essential for IoT contexts. This method demonstrates significant promise for detecting sophisticated cyber threats and providing an effective tool for real-world applications. The performance of the proposed model has been rigorously validated on well-established cybersecurity datasets and through simulations in an IoT network environment, confirming its scalability and efficiency. Future work will address potential limitations such as computational demands and adaptability to diverse IoT device architectures, ensuring broader applicability and robustness of the IDS in varied IoT scenarios.