Narayana, Divyaprabha Kabbal
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Optimal task partitioning to minimize failure in heterogeneous computational platform Narayana, Divyaprabha Kabbal; Babu, Sudarshan Tekal Subramanyam
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i1.pp1079-1088

Abstract

The increased energy consumption by heterogeneous cloud platforms surges the carbon emissions and reduces system reliability, thus, making workload scheduling an extremely challenging process. The dynamic voltage- frequency scaling (DVFS) technique provides an efficient mechanism in improving the energy efficiency of cloud platform; however, employing DVFS reduces reliability and increases the failure rate of resource scheduling. Most of the current workload scheduling methods have failed to optimize the energy and reliability together under a central processing unit - graphical processing unit (CPU-GPU) heterogeneous computing platform; As a result, reducing energy consumption and task failure are prime issues this work aims to address. This work introduces task failure minimization (TFM) through optimal task partitioning (OTP) for workload scheduling in the CPU-GPU cloud computational platform. The TFM-OTP introduces a task partitioning model for the CPU-GPU pair; then, it provides a DVFS- based energy consumption model. Finally, the energy-load optimization problem is defined, and the optimal resource allocation design is presented. The experiment is conducted on two standard workloads namely SIPHT and CyberShake workload. The result shows that the proposed TFA-OTP model reduces energy consumption by 30.35%, reduces makespan by 70.78% and reduces task failure energy overhead by 83.7% in comparison with energy minimized scheduling (EMS) approach.