Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

Enhancing SDN security with a feature-based approach using multiple k-means, Word2Vec, and neural network Yzzogh, Hicham; Benaboud, Hafssa
Bulletin of Electrical Engineering and Informatics Vol 14, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i2.8834

Abstract

In the rapidly evolving landscape of network management, software-defined networking (SDN) stands out as a transformative technology. It revolutionizes network management by decoupling the control and data planes, enhancing both flexibility and operational efficiency. However, this separation introduces significant security challenges, such as data interception, manipulation, and unauthorized access. To address these issues, this paper investigates the application of advanced clustering and classification algorithms for anomaly detection and traffic analysis in SDN environments. We present a novel approach that integrates multiple k-means clustering models with Word2Vec for feature extraction, followed by classification using a neural network (NN). Our method is rigorously benchmarked against a traditional NN model to comprehensively evaluate performance. Experimental results indicate that our approach outperforms the NN model, achieving an accuracy of 99.97% on the InSDN dataset and 98.65% on the CIC-DDoS2019 dataset, showcasing its effectiveness in detecting anomalies without relying on feature selection. These findings suggest that integrating clustering techniques with feature extraction algorithms can significantly enhance the security of SDN infrastructures.