Wesdawara, Wirarama
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Blockchain-Based TraditionalWeaving Certification and Elliptic Curve Digital Signature Rahman, Pradita Dwi; Wijayanto, Heri; Afwani, Royana; Wesdawara, Wirarama; Mardiansyah, Ahmad Zafrullah
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 24 No 1 (2024)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v24i1.4337

Abstract

Traditional weaving in West Nusa Tenggara was essential to the region’s cultural heritage. Many local micro, small, and medium enterprises continued to practice traditional weaving using natural materials. However, the rise of synthetic materials threatened this tradition, making distinguishing between natural and synthetic woven fabrics difficult. This study aimed to develop a blockchain-based self-certification system to enhance traceability, security, and efficiency using Non-Fungible Tokens. The research method leveraged the Elliptic Curve Digital Signature Algorithm for user authentication and smart contracts to mint Non-Fungible Tokens, ensuring the authenticity and origin of each product.Each product’s metadata was signed with a digital signature that anyone could authenticate, and the outcome and the product metadata became a certificate. This study resulted in a web prototype with an easy-to-use interface that allowed artisans to create certificates and sell their registered works. This solution aimed to ensure the authenticity of traditional woven products by offering secure and transparent blockchain technology.
Blockchain-Based TraditionalWeaving Certification and Elliptic Curve Digital Signature Rahman, Pradita Dwi; Wijayanto, Heri; Afwani, Royana; Wesdawara, Wirarama; Mardiansyah, Ahmad Zafrullah
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 24 No. 1 (2024)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v24i1.4337

Abstract

Traditional weaving in West Nusa Tenggara was essential to the region’s cultural heritage. Many local micro, small, and medium enterprises continued to practice traditional weaving using natural materials. However, the rise of synthetic materials threatened this tradition, making distinguishing between natural and synthetic woven fabrics difficult. This study aimed to develop a blockchain-based self-certification system to enhance traceability, security, and efficiency using Non-Fungible Tokens. The research method leveraged the Elliptic Curve Digital Signature Algorithm for user authentication and smart contracts to mint Non-Fungible Tokens, ensuring the authenticity and origin of each product.Each product’s metadata was signed with a digital signature that anyone could authenticate, and the outcome and the product metadata became a certificate. This study resulted in a web prototype with an easy-to-use interface that allowed artisans to create certificates and sell their registered works. This solution aimed to ensure the authenticity of traditional woven products by offering secure and transparent blockchain technology.