Controlling Micro-Electro-Mechanical Systems (MEMS) gyroscopes often involves dealing with uncertainties and external disturbances, which can complicate control strategies. This article proposes a novel control strategy that integrates Integral Sliding Mode Control (ISMC) with Time Delay Estimation (TDE) and Arithmetic Optimization Algorithm (AOA) to enhance control performance. The proposed controller, OTDISMC, is designed to eliminate chattering and improve robustness against disturbances without relying on system dynamics. Contrary to the conventional controllers structures which depended on the system dynamic in their schemes, a model free controller is formulated without using system dynamics in its formulation. Time delay estimation technique has been undertaken as an efficient approximating strategy to approximate and compensate the lumped uncertain dynamics of the system. AOA has been undertaken to determine the optimum solutions of the coefficients of proposed control approach. The stability has been analyzed and investigated using the Lyapunov stability criterion. To show the effectiveness and validity of the developed controller, computer simulations in nominal and robustness scenarios have been carried out and compared with TDISMC that tuned by trial and error and PSO-TDISMC that tuned by particle swarm optimization (PSO). Simulation results demonstrate that OTDISMC significantly reduces tracking errors and improves robustness. The results indicate the superiority of the proposed controller as compared with traditional TDISMC tuned by classical methods and PSO-TDISMC tuned by particle swarm optimization (PSO).