Raman, Periyannan
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Accurate detection of melanoma skin cancer using fuzzy based SegNet model and normalized stacked LSTM network Chembian, Woothukadu Thirumaran; Sankar, Krishna Murthi; Koteeswaran, Seerangan; Thinakaran, Kandasamy; Raman, Periyannan
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 1: July 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i1.pp323-334

Abstract

Early detection of melanoma skin cancer (MSC) is critical in order to prevent deaths from fatal skin cancer. Even though the modern research methods are effective in identifying and detecting skin cancer, it is a challenging task due to a higher level of color similarity between melanoma non-affected areas and affected areas, and a lower contrast between the skin portions and melanoma moles. For highlighting the aforementioned problems, an efficient automated system is proposed for an early diagnosis of MSC. Firstly, dermoscopic images are collected from two benchmark datasets namely, international skin imaging collaboration (ISIC)-2017 and PH2. Next, skin lesions are segmented from dermoscopic images by implementing a fuzzy based SegNet model which is a combination of both deep fuzzy clustering algorithm and the SegNet model. Then, hybrid feature extraction (ResNet-50 model and local tri-directional pattern (LTriDP) descriptor) is performed to capture the features from segmented skin lesions. These features are given into the normalized stacked long short-term memory (LSTM) network to categorize the classes of skin lesions. The empirical evaluation reveals that the proposed normalized stacked LSTM network achieves 98.98% and 98.97% of accuracy respectively on the ISIC2017 and PH2 datasets, and these outcomes are more impressive than those of the conventional detection models.